Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему. Расчет тепловых нагрузок на отопление, методика и формула расчета

Уют и комфорт жилья начинаются не с выбора мебели, отделки и внешнего вида в целом. Они начинаются с тепла, которое обеспечивает отопление. И просто приобрести для этого дорогой нагревательный котел () и качественные радиаторы недостаточно – сначала необходимо спроектировать систему, которая будет поддерживать в доме оптимальную температуру. Но чтобы получить хороший результат, нужно понимать, что и как следует делать, какие существуют нюансы и как они влияют на процесс. В этой статье вы ознакомитесь с базовыми знаниями о данном деле – что такое системы отопления, как он проводится и какие факторы на него влияют.

Для чего необходим тепловой расчет

Некоторые владельцы частных домов или те, кто только собираются их возводить, интересуются тем, есть ли какой-то смысл в тепловом расчете системы отопления? Ведь речь идет о простом загородном коттедже, а не о многоквартирном доме или промышленном предприятии. Достаточно, казалось бы, только купить котел, поставить радиаторы и провести к ним трубы. С одной стороны, они частично правы – для частных домовладений расчет отопительной системы не является настолько критичным вопросом, как для производственных помещений или многоквартирных жилых комплексов. С другой стороны, существует три причины, из-за которых подобное мероприятие стоит провести. , вы можете прочитать в нашей статье.

  1. Тепловой расчет существенно упрощает бюрократические процессы, связанные с газификацией частного дома.
  2. Определение мощности, требуемой для отопления жилья, позволяет выбрать нагревательный котел с оптимальными характеристиками. Вы не переплатите за избыточные характеристики изделия и не будет испытывать неудобств из-за того, что котел недостаточно мощен для вашего дома.
  3. Тепловой расчет позволяет более точно подобрать , трубы, запорную арматуру и прочее оборудование для отопительной системы частного дома. И в итоге все эти довольно дорогостоящие изделия проработают столько времени, сколько заложено в их конструкции и характеристиках.

Исходные данные для теплового расчета системы отопления

Прежде чем приступать к подсчетам и работе с данными, их необходимо получить. Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже.

  1. Площадь постройки, высота до потолков и внутренний объем.
  2. Тип здания, наличие примыкающих к нему строений.
  3. Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
  4. Количество окон и дверей, как они обустроены, насколько качественно утеплены.
  5. Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
  6. Продолжительность отопительного сезона, средний минимум температуры в этот период.
  7. «Роза ветров», наличие неподалеку других строений.
  8. Местность, где уже построен или только еще будет возводиться дом.
  9. Предпочтительная для жильцов температура тех или иных помещений.
  10. Расположение точек для подключения к водопроводу, газу и электросети.

Расчет мощности системы отопления по площади жилья

Одним из наиболее быстрых и простых для понимания способов определения мощности отопительной системы является расчет по площади помещения. Подобный метод широко применяется продавцами нагревательных котлов и радиаторов. Расчет мощности системы отопления по площади происходит в несколько простых шагов.

Шаг 1. По плану или уже возведенному зданию определяется внутренняя площадь постройки в квадратных метрах.

Шаг 2. Полученная цифра умножается на 100-150 – именно столько ватт от общей мощности отопительной системы нужно на каждый м 2 жилья.

Шаг 3. Затем результат умножается на 1,2 или 1,25 – это необходимо для создания запаса мощности, чтобы отопительная система была способна поддерживать комфортную температуру в доме даже в случае самых сильных морозов.

Шаг 4. Вычисляется и записывается конечная цифра – мощность системы отопления в ваттах, необходимая для обогрева того или иного жилья. В качестве примера – для поддержания комфортной температуры в частном доме площадью 120 м 2 потребуется примерно 15 000 Вт.

Совет! В некоторых случаях владельцы коттеджей разделяют внутреннюю площадь жилья на ту часть, которой требуется серьезный обогрев, и ту, для которой подобное излишне. Соответственно, для них применяются разные коэффициенты – к примеру, для жилых комнат это 100, а для технических помещений – 50-75.

Шаг 5. По уже определенным расчетным данным подбирается конкретная модель нагревательного котла и радиаторов.

Следует понимать, что единственным преимуществом подобного способа теплового расчета отопительной системы является скорость и простота. При этом метод обладает множеством недостатков.

  1. Отсутствие учета климата в той местности, где возводиться жилье – для Краснодара система отопления с мощностью 100 Вт на каждый квадратный метр будет явно избыточной. А для Крайнего Севера она может оказаться недостаточной.
  2. Отсутствие учета высоты помещений, типа стен и полов, из которых они возведены – все эти характеристики серьезно влияют на уровень возможных тепловых потерь и, следовательно, на необходимую мощность отопительной системы для дома.
  3. Сам способ расчета системы отопления по мощности изначально был разработан для больших производственных помещений и многоквартирных домов. Следовательно, для отдельного коттеджа он не является корректным.
  4. Отсутствие учета количества окон и дверей, выходящих на улицу, а ведь каждый из подобных объектов является своеобразным «мостиком холода».

Так имеет ли смысл применять расчет системы отопления по площади? Да, но только в качестве предварительных прикидок, позволяющих получить хоть какое-то представление о вопросе. Для достижения лучших и более точных результатов следует обратиться к более сложным методикам.

Представим следующий способ расчета мощности системы отопления – он также является довольно простым и понятным, но при этом отличается более высокой точностью конечного результата. В данном случае основой для вычислений становится не площадь помещения, а его объем. Кроме того, в расчете учитывается количество окон и дверей в здании, средний уровень морозов снаружи. Представим небольшой пример применения подобного метода – имеется дом общей площадью 80 м 2 , комнаты в котором имеют высоту 3 м. Постройка располагается в Московской области. Всего есть 6 окон и 2 двери, выходящие наружу. Расчет мощности тепловой системы будет выглядеть так. «Как сделать , Вы можете прочитать в нашей статье».

Шаг 1. Определяется объем здания. Это может быть сумма каждой отдельной комнаты либо общая цифра. В данном случае объем вычисляется так – 80*3=240 м 3 .

Шаг 2. Подсчитывается количество окон и количество дверей, выходящих на улицу. Возьмем данные из примера – 6 и 2 соответственно.

Шаг 3. Определяется коэффициент, зависящий от местности, в которой стоит дом и того, насколько там сильные морозы.

Таблица. Значения региональных коэффициентов для расчета мощности отопления по объему.

Так как в примере речь идет о доме, построенном в Московской области, то региональный коэффициент будет иметь значение 1,2.

Шаг 4. Для отдельно стоящих частных коттеджей определенное в первой операции значение объема здания умножается на 60. Делаем подсчет – 240*60=14 400.

Шаг 5. Затем результат вычисления предыдущего шага множится на региональный коэффициент: 14 400 * 1,2 = 17 280.

Шаг 6. Число окон в доме умножается на 100, число дверей, выходящих наружу – на 200. Результаты суммируются. Вычисления в примере выглядят следующим образом – 6*100 + 2*200 = 1000.

Шаг 7. Цифры, полученные по итогам пятого и шестого шагов, суммируются: 17 280 + 1000 = 18 280 Вт. Это и есть мощность отопительной системы, необходимая для поддержания оптимальной температуры в здании при условиях, указанных выше.

Стоит понимать, что расчет системы отопления по объему также не является абсолютно точным – в вычислениях не уделяется внимание материалу стен и пола здания и их теплоизоляционным свойствам. Также не делается поправка на естественную вентиляцию, свойственную любому дому.

Укажите запрашиваемые данные и нажмите
«РАССЧИТАТЬ ОБЪЕМ ТЕПЛОНОСИТЕЛЯ»

КОТЁЛ

Объем теплообменника котла, литров (паспортная величина)

РАСШИРИТЕЛЬНЫЙ БАК

Объем расширительного бака, литров

ПРИБОРЫ ИЛИ СИСТЕМЫ ТЕПЛООБМЕНА

Разборные, секционные радиаторы

Тип радиатора:

Общее количество секций

Неразборные радиаторы и конвекторы

Объем прибора по паспорту

Количество приборов

Теплый пол

Тип и диаметр трубы

Общая длина контуров

ТРУБЫ КОНТУРА ОТОПЛЕНИЯ (подача + обратка)

Стальные трубы ВГП

Ø ½ ", метров

Ø ¾ ", метров

Ø 1 ", метров

Ø 1¼ ", метров

Ø 1½ ", метров

Ø 2 ", метров

Армированные полипропиленовые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

Ø 50 мм, метров

Металлопластиковые трубы

Ø 20 мм, метров

Ø 25 мм, метров

Ø 32 мм, метров

Ø 40 мм, метров

ДОПОЛНИТЕЛЬНЫЕ ПРИБОРЫ И УСТРОЙСТВА СИСТЕМЫ ОТОПЛЕНИЯ (теплоаккумулятор, гидрострелка, коллектор, теплобоменник и другие)

Наличие дополнительных приборов и устройств:

Суммарный объем дополнительных элементов системы

Видео — Расчет тепловой мощности систем отопления

Тепловой расчет системы отопления – пошаговая инструкция

Перейдем от быстрых и простых способов расчета к более сложному и точному методу, учитывающему различные факторы и характеристики жилья, для которого проектируется система отопления. Используемая формула похожа по своему принципу на ту, что использовалась для расчета по площади, но дополнена огромным количеством корректирующих коэффициентов, каждый из которых отображает тот или иной фактор или характеристику здания.

Q=1,2*100*S*К 1 *К 2 *К 3 *К 4 *К 5 *К 6 *К 7

Теперь разберем составляющие этой формулы по отдельности. Q – конечный результат вычислений, необходимая мощность отопительной системы. В данном случае представлен в ваттах, при желании вы можете перевести его в КВт*ч. , Вы можете прочитать в нашей статье.

А 1,2 – это коэффициент резерва по мощности. Желательно учитывать его в ходе расчетов – тогда вы точно можете быть уверены в том, что нагревательный котел обеспечит вам комфортную температуру в доме даже в самые сильные морозы за окном.

Цифру 100 вы могли видеть ранее – это количество ватт, необходимых для обогрева одного квадратного метра жилой комнаты. Если речь идет о нежилом помещении, кладовке и т. д. – его можно изменить в меньшую сторону. Также данная цифра нередко корректируется, исходя из личных предпочтений хозяина дома – кому-то комфортно в «натопленной» и очень теплой комнате, кому-то больше по душе прохлада поэтому п , возможно подойдет вам.

S – площадь комнаты. Высчитывается на основе плана постройки или уже по готовым помещениям.

Теперь перейдем непосредственно к корректирующим коэффициентам. К 1 учитывает конструкцию окон, применяющихся в той или иной комнате. Чем больше значение – тем выше потери тепла. Для самого простого одинарного стекла К 1 равен 1,27, для двойного и тройного стеклопакетов – 1 и 0,85 соответственно.

К 2 учитывает фактор потерь тепловой энергии через стены здания. Значение зависит от того, из какого материала они сложены, и обладают ли слоем теплоизоляции.

Некоторые из примеров данного коэффициента приведены в следующем списке:

  • кладка в два кирпича со слоем теплоизоляции 150 мм – 0,85;
  • пенобетон – 1;
  • кладка в два кирпича без теплоизоляции – 1,1;
  • кладка в полтора кирпича без теплоизоляции – 1,5;
  • стена бревенчатого сруба – 1,25;
  • стена из бетона без утепления – 1,5.

К 3 показывает соотношение площади окон к площади помещения. Очевидно, что чем больше их – тем выше теплопотери, так как каждое окно является «мостиком холода», и полностью этот фактор нельзя устранить даже для самых качественных тройных стеклопакетов с прекрасным утеплением. Значения данного коэффициента приведены в таблице ниже.

Таблица. Корректирующий коэффициент соотношения площади окон к площади помещения.

Соотношение площади окон к площади пола в помещении Значение коэффициента К3
10% 0,8
20% 1,0
30% 1,2
40% 1,4
50% 1,5

По своей сути К 4 похож на региональный коэффициент, который использовался в тепловом расчете системы отопления по объему жилья. Но в данном случае он привязан не к какой-то конкретной местности, а к среднему минимуму температуры в самый холодный месяц года (обычно для этого выбирается январь). Соответственно, чем этот коэффициент выше, тем больше энергии потребуется для отопительных нужд – прогреть помещение при -10°С намного проще, чем при -25°С.

Все значения К 4 приведены ниже:

  • до -10°С – 0,7;
  • -10°С – 0,8;
  • -15°С – 0,9;
  • -20°С – 1,0;
  • -25°С – 1,1;
  • -30°С – 1,2;
  • -35°С – 1,3;
  • ниже -35°С – 1,5.

Следующий коэффициент К 5 учитывает число стен в помещении, выходящих наружу. Если она одна – его значение равно 1, для двух – 1,2, для трех – 1,22, для четырех – 1,33.

Важно! В ситуации, когда тепловой расчет применяется для всего дома сразу, используется К 5 , равный 1,33. Но значение коэффициента может уменьшиться в том случае, когда к коттеджу пристроен отапливаемый сарай или гараж.

Перейдем к двум последним корректирующим коэффициентам. К 6 учитывает то, что находится над помещением – жилой и отапливаемый этаж (0,82), утепленный чердак (0,91) или холодный чердак (1).

К 7 корректирует результаты расчета в зависимости от высоты комнаты:

  • для помещения высотой 2,5 м – 1;
  • 3 м – 1,05;
  • 5 м – 1,1;
  • 0 м – 1,15;
  • 5 м – 1,2.

Совет! При расчетах также стоит обратить внимание на розу ветров в той местности, где будет располагаться дом. Если он будет постоянно находиться под воздействием северного ветра, то потребуется более мощная .

Результатом применения формулы, изложенной выше, станет требуемая мощность отопительного котла для частного дома. А теперь приведем пример расчета по данному способу. Исходные условия следующие.

  1. Площадь помещения – 30 м 2 . Высота – 3 м.
  2. В качестве окон используются двойные стеклопакеты, их площадь относительно таковой у комнаты – 20%.
  3. Тип стены – кладка в два кирпича без слоя теплоизоляции.
  4. Средний минимум января для местности, где стоит дом, составляет -25°С.
  5. Помещение является угловым в коттедже, следовательно, наружу выходят две стены.
  6. Над комнатой – утепленный чердак.

Формула для теплового расчета мощности отопительной системы будет выглядеть следующим образом:

Q=1,2*100*30*1*1,1*1*1,1*1,2*0,91*1,02=4852 Вт

Двухтрубная схема нижней разводки системы отопления

Важно! Существенно ускорить и упростить процесс расчета системы отопления поможет специальное программное обеспечение.

После завершения расчетов, изложенных выше, необходимо определить, сколько радиаторов и с каким числом секций понадобится для каждого отдельного помещения. Для подсчета их количества есть простой способ.

Шаг 1. Определяется материал, из которого будут изготовлены батареи отопления в доме. Это может быть сталь, чугун, алюминий или биметаллический композит.

Шаг 3. Подбираются модели радиаторов, подходящих владельцу частного дома по стоимости, материалу и некоторым другим характеристикам.

Шаг 4. На основании технической документации, ознакомиться с которой можно на сайте компании-производителя или продавца радиаторов, определяется, какую мощность выдает каждая отдельная секция батареи.

Шаг 5. Последний шаг – разделить мощность, требуемую на обогрев помещения, на мощность, вырабатываемую отдельной секцией радиатора.

На этом ознакомление с базовыми знаниями о тепловом расчете системы отопления и способах его осуществления можно считать законченным. Для получения большего объема информации желательно обратиться к специализированной литературе. Также будет не лишним ознакомиться с нормативными документами, такими как СНиП 41-01-2003.

СНиП 41-01-2003. Отопление, вентиляция и кондиционирование. Файл для скачивания (нажмите на ссылку, чтобы открыть PDF-файл в новом окне).

q - удельная отопительная характеристика здания, ккал/мч °С принимается по справочнику в зависимости от наружного объема здания .

а – поправочный коэффициент, учитывающий климатические условия района, для г. Москва, а = 1,08.

V - наружный объем здания, м определяется по строительным данным.

t - средняя температура воздуха внутри помещения, °С принимается в зависимости от типа здания.

t - расчетная температура наружного воздуха для отопления , °С для г. Москва t= -28 °С.

Источник: http://vunivere.ru/work8363

Q yч составляется из тепловых нагрузок приборов, обслуживаемых протекающей по участку водой:

(3.1)

Для участка подающего теплопровода тепловая нагрузка выражает запас теплоты в протекающей горячей воде, предназначенной для последующей (на дальнейшем пути воды) теплопередачи в помещения. Для участка обратного теплопровода - потери теплоты протекающей охлажденной водой при теплопередаче в помещения (на предшествующем пути воды). Тепловая нагрузка участка предназначена для определения расхода воды на участке в процессе гидравлического расчета .

Расход воды на участке G уч при расчетной разности температуры воды в системе t г - t х с учетом дополнительной теплоподачи в помещения

где Q yч - тепловая нагрузка участка, найденная по формуле (3.1);

β 1 β 2 - поправочные коэффициенты, учитывающие дополнительную теплоподачу в помещения;

с - удельная массовая теплоемкость воды, равная 4,187 кДж/(кг°С).

Для получения расхода воды на участке в кг/ч тепловую нагрузку в Вт следует выразить в кДж/ч, т.е. умножить на (3600/1000)=3,6.

в целом равна сумме тепловых нагрузок всех отопительных приборов (теплопотерь помещений). По общей теплопотребности для отопления здания определяют расход воды в системе отопления .

Гидравлический расчет связан с тепловым расчетом отопительных приборов и труб. Требуется многократное повторение расчетов для выявления действительных расхода и температуры воды, необходимой площади приборов. При расчете вручную сначала выполняют гидравлический расчет системы , принимая средние значения коэффициента местного сопротивления (КМС) приборов, затем - тепловой расчет труб и приборов.

Если в системе применяют конвекторы, в конструкцию которых входят трубы Dy15 и Dy20, то для более точного расчета предварительно определяют длину этих труб, а после гидравлического расчета с учетом потерь давления в трубах приборов, уточнив расход и температуру воды, вносят поправки в размеры приборов.

Источник: http://teplodoma.com.ua/1/gidravliheskiy_rashet/str_19.html

В данном разделе Вы сможете максимально подробно ознакомиться с вопросами связанными с расчетом тепловых потерь и тепловых нагрузок здания.

Строительство отапливаемых зданий без проведения расчета тепловых потерь запрещено!*)

И хотя большинство до сих пор строят на авось, по совету соседа или кума. Правильно и четенько начинать еще на этапе разработки рабочего проекта на строительство. Как это делается?

Архитектор (или сам застройщик) предоставляет нам список "доступных" или "приоритетных" материалов для обустройства стен, кровли, основания, какие планируются окна, двери.

Уже на этапе проектирования дома или здания, а так же для подбора систем отопления, вентиляции, кондиционирования необходимо знать тепловые потери здания.

Расчет теплопотерь на вентиляцию мы часто используем в своей практике для расчета экономической целесообразности модернизации и автоматизации системы вентиляции / кондиционирования, т.к. расчет тепловых потерь на вентиляцию дает ясное представление о выгодах и сроке окупаемости вложенных в энергосберегающие мероприятия (автоматизация, использование рекуперации, утепления воздуховодов, частотных регуляторов) средств.

Расчет тепловых потерь здания

Это основа для грамотного подбора мощности отопительного оборудования (котла, бойлера) и отопительных приборов

Основные тепловые потери здания обычно приходятся на крышу, стены, окна и полы. Достаточно большая часть тепла покидает помещения через систему вентиляции.

Рис. 1 Теплопотери здания

Главные факторы влияющие на теплопотери в здании - разница температур в помещении и на улице (чем больше разница, тем больше телопотери) и теплоизоляционные свойства ограждающих конструкций (фундамент, стены, перекрытия, окна, кровля).

Рис.2 Тепловизионная съемка тепловых потерь здания

Материалы ограждающих конструкций препятствуют проникновению тепла помещений наружу зимой и проникновению жары в помещения летом, потому как подбираемые материалы должны обладать определенными теплоизоляционными свойствами, которые обозначают величиной, называемой - сопротивление теплопередаче.

Полученная величина покажет, каков будет реальный перепад температур при прохождении определенного количества тепла через 1м² конкретной ограждающей конструкции, а также сколько тепла уйдет через 1м² при определенном перепаде температур.

#image.jpgКак делается расчет тепловых потерь

При расчете тепловых потерь здания в основном нас будет интересовать все наружные ограждающие конструкции и расположение внутренних перегородок.

Для расчета тепловых потерь по кровле также необходимо учитывать форму кровли и наличие воздушного зазора. Так же есть свои нюансы при тепловом расчете пола помещения.

Чтобы получить максимально точное значение тепловых потерь здания необходимо учесть абсолютно все ограждающие поверхности (фундамент, перекрытия, стены, кровля), составляющие их материалы и толщину каждого слоя, а так же положение здания относительно сторон света и климатические условия в данном регионе.

Чтобы заказать расчет тепловых потерь Вам необходимо заполнить наш опросной лист и мы в самое ближайшее время (не более 2-х рабочих дней) направим на указанный почтовый адрес наше коммерческое предложение.

Состав работ по расчету тепловых нагрузок здания

Основной состав документации по расчету тепловой нагрузки здания:

  • расчет тепловых потерь здания
  • расчет тепловых потерь на вентиляцию и инфильтрацию
  • разрешительная документация
  • сводная таблица тепловых нагрузок

Стоимость расчета тепловых нагрузок здания

Стоимость услуг по расчету тепловых нагрузок здания не имеет единой расценки, цена на расчет зависит от многих факторов:

  • отапливаемая площадь;
  • наличия проектной документации;
  • архитектурная сложность объекта;
  • состава ограждающих конструкций;
  • количества потребителей тепла;
  • разноплановость назначения помещений и т.п.

Узнать точную стоимость и заказать услугу по расчету тепловой нагрузки здания не сложно, для этого Вам достаточно отправить нам на электронную почту (форма) поэтажный план здания, заполнить небольшой опросной лист и через 1 рабочий день Вы получите на указанный Вами почтовый ящик наше коммерческое предложение.

#image.jpgПримеры стоимости расчета тепловых нагрузок

Тепловые расчеты для частного дома

Комплект документации:

- расчет тепловых потерь (покомнотно, поэтажно, инфильтрация, всего)

- расчет тепловой нагрузки на подогрев горячей воды (ГВС)

- расчет на подогрев воздуха с улицы для проветривания

Пакет тепловых документов обойдется в таком случае - 1600 грн.

К таким расчетам бонусом Вы получаете:

Реккомендации по утеплению и устранению мостиков холода

Подбор мощности основного оборудования

_____________________________________________________________________________________

Спортивный комплекс — отдельно стоящее 4-х этажное здание типовой постройки, общей площадью 2100м.кв. с большим спортзалом, подогреваемой приточной-вытяжной системой вентиляции, радиаторным отоплением, полным комплектом документации — 4200,00 грн.

_____________________________________________________________________________________

Магазин — встроенное в жилое здание помещение на 1-м этаже, общей площадью 240 м.кв. из них 65 м.кв. складские помещения, без подвала, радиаторное отопление, подогреваемая приточно-вытяжная вентиляция с рекуперацией — 2600,00 грн.

______________________________________________________________________________________

Сроки выполнения работ по расчету тепловых нагрузок

Срок выполнения работ по расчету тепловых нагрузок здания в основном зависит от следующих составляющих:

  • общая отапливаемая площадь помещений или здания
  • архитектурная сложность объекта
  • сложность или многослойность ограждающих конструкций
  • количество потребителей тепла: отопление, вентиляция, ГВС, другое
  • многофункциональность помещений (склад, офисы, торговый зал, жилое и т.п.)
  • организация узла коммерческого учета тепловой энергии
  • полноты наличия документации (проект отопления , вентиляции, исполнительные схемы по отоплению, вентиляции и т.п.)
  • разноплановость использования материалов ограждающих конструкций при строительстве
  • сложность системы вентиляции (рекуперация, АСУ, зонное регулирование температур)

В большинстве случаев для здания общей площадью не более 2000 м.кв. Срок расчета тепловых нагрузок здания составляет от 5 до 21 рабочих дней в зависимости от вышеперечисленных характеристик здания, предоставленной документации и инженерных систем.

Согласование расчета тепловых нагрузок в тепловых сетях

После выполнения всех работ по расчету тепловых нагрузок и сбора всех необходимых документов подходим к финишному, но непростому вопросу о согласовании расчета тепловых нагрузок в городских тепловых сетях. Процесс этот «классический» пример общения с государственной структурой, примечателен массой интересных новшеств, уточнений, взглядов, интересов абонента (клиента) или представителя подрядной организации (взявшей на себя обязательства по согласованию расчета тепловых нагрузок в теплосетях) с представителями городских тепловых сетей. В общем процесс часто непростой, но преодолимый.

Перечень предоставляемой документации для согласования примерно выглядит так:

  • Заявление (пишется непосредственно в тепловых сетях);
  • Расчет тепловых нагрузок (в полном объеме);
  • Лицензия, перечень лицензированных работ и услуг подрядной организации выполняющей расчеты;
  • Техпаспорт на здание или помещение;
  • Право устанавливающая документация на право собственности объектом и др.

Обычно за срок согласования расчета тепловых нагрузок принимается — 2 недели (14 рабочих дней) при условии сдачи документации в полном объеме и необходимом виде.

Услуги по расчету тепловых нагрузок здания и сопутствующих задач

При заключении или переоформлении договора о поставке тепла от городских тепловых сетей или оформления и устройства узла коммерческого учета тепла, тепловые сети ставят в известность владельца здания (помещений) о необходимости:
  • получить технические условия (ТУ);
  • предоставить расчет тепловой нагрузки здания на согласование;
  • проект на систему отопления;
  • проект на систему вентиляции;
  • и др.

Предлагаем свои услуги по проведению необходимых расчетов, проектированию систем отопления, вентиляции и последующих согласований в городских тепловых сетях и др. контролирующих органах.

Вы сможете заказать как отдельный документ, проект или расчет, так и оформление всех необходимых документов «под ключ » с любого этапа.

Обсудить тему и оставить отзывы: "РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ и НАГРУЗОК" на ФОРУМЕ #image.jpg

Будем рады продолжить сотрудничество с Вами, предложив:

Поставка оборудования и материалов по оптовым ценам

Проектные работы

Монтажные / инсталляционные / пусконаладочные работы

Дальнейшее обслуживание и оказание услуг по сниженным ценам (для постоянных клиентов)

Метод теплового расчета являет собой определение площади поверхности каждого отдельного отопительного прибора, который отдает в помещение тепло. Расчет тепловой энергии на отопление в данном случае учитывает максимальный уровень температуры теплоносителя, который предназначен для тех отопительных элементов, для которых и проводится теплотехнический расчет системы отопления. То есть, в случае если теплоноситель – вода, то берется средняя ее температура в отопительной системе. При этом учитывается расход теплоносителя. Точно также, в случае если теплоносителем является пар, то расчет тепла на отопление использует значение высшей температуры пара при определенном уровне давления в отопительном приборе.

Методика расчета

Чтобы осуществить расчет теплоэнергии на отопление, необходимо взять показатели теплопотребности отдельного помещения. При этом из данных следует вычесть теплоотдачу теплопровода, который расположен в данном помещении.

Площадь поверхности, отдающей тепло, будет зависеть от нескольких факторов – прежде всего, от типа используемого прибора, от принципа соединения его с трубами и от того, как именно он располагается в помещении. При этом следует отметить, что все эти параметры влияют также на плотность потока тепла, исходящего от прибора.

Расчет отопительных приборов системы отопления – теплоотдачу отопительного прибора Q можно определить по следующей формуле:

Q пр = q пр* A p .

Однако воспользоваться ею можно только в том случае, если известен показатель поверхностной плотности теплового прибора q пр (Вт/м 2).

Отсюда же можно вычислить и расчетную площадь А р. При этом важно понимать, что расчетная площадь любого отопительного прибора не зависит от типа теплоносителя.

А р = Q np /q np ,

в которой Q np – уровень требуемой для определенного помещения теплоотдачи прибора.

Тепловой расчет отопления учитывает, что для определения теплоотдачи прибора для определенного помещения используется формула:

Q пp = Q п - µ тр *Q тр

при этом показатель Q п – это теплопотребность комнаты, Q тр – суммарная теплоотдача всех элементов отопительной системы, расположенной в комнате. Расчет тепловой нагрузки на отопление подразумевает, что сюда относится не только радиатор, но и трубы, которые к нему подведены, и транзитный теплопровод (если есть). В данной формуле µ тр – коэффициент поправки, который предусматривает частичную теплоотдачу системы, рассчитанную на поддержание постоянной температуры в помещении. При этом размер поправки может колебаться в зависимости от того, как именно прокладывались трубы отопительной системы в помещении. В частности – при открытом методе – 0,9; в борозде стены – 0,5; вмурованные в бетонную стену – 1,8.

Расчет необходимой мощности отопления, то есть – суммарная теплоотдача (Q тр - Вт) всех элементов отопительной системы определяется при помощи следующей формулы:

Q тр = µk тр *µ*d н *l*(t г - t в)

В ней k тр – показатель коэффициента теплоотдачи определенного отрезка трубопровода, расположенного в помещении, d н - наружный диаметр трубы, l – длинна отрезка. Показатели t г и t в показывают температуру теплоносителя и воздуха в помещении.

Формула Q тр = q в *l в + q г *l г используется для определения уровня теплоотдачи теплопровода, присутствующего в помещении. Для определения показателей следует обратиться к специальной справочной литературе. В ней можно найти определение тепловой мощности системы отопления – определение теплоотдачи вертикально (q в) и горизонтально (q г) проложенного в помещении теплопровода. Найденные данным показывают теплоотдачу 1м трубы.

Перед тем, как рассчитать гкал на отопление, на протяжении многих лет вычисления, производимые по формуле A p = Q np /q np и измерения теплоотдающих поверхностей отопительной системы, проводились с использованием условной единицы – эквивалентных квадратных метрах. При этом экм был условно равен поверхности прибора отопления с теплоотдачей 435 ккал/ч (506 Вт). Расчет гкал на отопление предполагает, что при этом разность температур теплоносителя и воздуха (t г - t в) в помещении составляла 64,5°С, а относительный расход воды в системе равнялся показателю G отн = l,0.

Расчет тепловых нагрузок на отопление подразумевает, что при этом гладкотрубные и панельные отопительные приборы, которые имели большую теплоотдачу, чем эталонные радиаторы времен СССР, имели площадь экм, которая значительно отличалась от показателя их физической площади. Соответственно, площадь экм менее эффективных отопительных приборов была значительно ниже, чем их площадь физическая.

Впрочем, такой двойственный замер площади приборов отопления в 1984 году было упрощено, и экм отменили. Таким образом, с того момента площадь отопительного прибора измерялась только в м 2 .

После того, как будет просчитана необходимая для помещения площадь отопительного прибора и расчет тепловой мощности системы отопления, можно приступать к подбору необходимого радиатора по каталогу отопительных элементов.

При этом получается, что чаще всего площадь приобретаемого элемента получается несколько больше той, которая была получена путем вычислений. Это довольно легко объяснить – ведь подобная поправка учитывается заранее посредством введения в формулы повышающего коэффициента µ 1 .

Сегодня весьма распространены секционные радиаторы. Их длина напрямую зависит от количества используемых секций. Для того чтобы произвести расчет количества тепла на отопление – то есть, высчитать оптимальное количество секций для определенного помещения, используется формула:

N = (A p /a 1)(µ 4 / µ 3)

В ней а 1 – это площадь одной секции радиатора, выбранного для установки в помещении. Измеряется в м 2 . µ 4 –коэффициент поправки который вносится на способ установки отопительного радиатора. µ 3 – коэффициент поправки, который указывает реальное количество секций в радиаторе (µ 3 - 1,0 при условии, что А р = 2,0 м 2). Для стандартных радиаторов типа М-140 данный параметр определяется по формуле:

µ 3 =0,97+0,06/А р

При тепловых испытаниях используются стандартные радиаторы, состоящие в среднем, из 7-8 секций. То есть, определенный нами расчет расхода тепла на отопление – то есть, коэффициент теплопередачи, является реальным только для радиаторов именно такого размера.

Следует отметить, что при применении радиаторов с меньшим количеством секций наблюдается незначительное увеличение уровня теплоотдачи.

Это связано с тем, что в крайних секциях тепловой поток несколько более активен. Кроме того, открытые торцы радиатора способствуют большей теплоотдаче в воздух помещения. В случае если количество секций больше – наблюдается ослабление тока в крайних секциях. Соответственно, для достижения необходимого уровня теплоотдачи наиболее рациональным является незначительное увеличение длины радиатора за счет добавления секций, что не повлияет на мощность системы отопления.

Для тех радиаторов, площадь одной секции в которых составляет 0,25 м 2 , существует формула для определения коэффициента µ 3:

µ 3 = 0,92 + 0,16 /А р

Но следует учитывать, что крайне редко при использовании данной формулы получается целое число секций. Чаще всего искомое количество оказывается дробным. Расчет нагревательных приборов системы отопления предполагает, что для получения более точного результата допустимо незначительное (не более чем на 5%) снижение коэффициента А р. Такое действие приводит к ограничению уровня отклонения температурного показателя в помещении. Когда произведен расчет тепла на отопление помещения, после получения результата устанавливается радиатор с максимально близким к полученному значению количеством секций.

Расчет мощности отопления по площади предполагает, что определенные условия на установку радиаторов накладывает и архитектура дома.

В частности, если имеется внешняя ниша под окном, то длина радиатора должна быть менее длины ниши – не менее чем на 0,4 м. Такое условие действительно лишь при прямой подводке трубы к радиатору. В случае если применена подводка с уткой, разница длины ниши и радиатора должна составлять минимум 0,6 м. При этом лишние секции следует выделить как отдельный радиатор.

Для отдельных моделей радиаторов формула расчета тепла на отопление – то есть, определения длины, не применяется, поскольку данный параметр заранее определен производителем. Это в полной мере относится к радиаторам типа РСВ или РСГ. Однако нередки случаи, когда для увеличения площади прибора отопления данного типа используется просто параллельная установка двух панелей рядом.

Если панельный радиатор определен как единственный допустимый для данного помещения, то для определения количества необходимых радиаторов используется:

N = A p / a 1 .

При этом площадь радиатора – известный параметр. В случае если будет установлено два параллельных блока радиаторов, показатель А р увеличивают, определяя сниженный коэффициент теплопередачи.

В случае использования конвекторов с кожухом расчет мощности отопления учитывает, что их длина также определяется исключительно существующим модельным рядом. В частности, напольный конвектор «Ритм» представлен в двух моделях с длиной кожуха 1 м и 1,5 м. Настенные конвекторы также могут незначительно отличатся друг от друга.

В случае применения конвектора без кожуха существует формула, помогающая определить количество элементов прибора, после чего можно реализовать расчет мощности системы отопления:

N = A p / (n*a 1)

Здесь n – количество рядов и ярусов элементов, которые и составляют площадь конвектора. При этом a 1 – площадь одной трубы или элемента. При этом при определении расчетной площади конвектора необходимо учитывать не только количество его элементов, но и метод их соединения.

В случае применения в отопительной системе гладкотрубного прибора продолжительность его греющей трубы вычисляется следующим образом:

l = А р *µ 4 / (n*a 1)

µ 4 - это коэффициент поправки, который вносится при наличии декоративного укрытия трубы; n – количество рядов или ярусов греющих труб; а 1 – параметр, характеризующий площадь одного метра горизонтальной трубы при определенном заранее диаметре.

Для получения более точного (а не дробного числа), допускается незначительное (не более чем на 0,1 м 2 или же 5%) снижение показателя А.

Пример №1

Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Q n =1410 Вт, а t в =18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (D y 20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, t г = 105°С, а расход теплоносителя по стояку составляет G ст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.

Определяем средний показатель температуры в радиаторе:

t ср = (105 - 2) - 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.

Опираясь на полученные данные, вычисляем плотность теплового потока:

t ср = 100,8 - 18 = 82,8 °С

При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на q np .

Q пр =650(82,8/70)1+0,3=809Вт/м2.

Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 - 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Q тр =q в хl в + q г хl г.

Получаем:

Q тр = 93х2,2 + 115х0,8 = 296 Вт.

Рассчитываем площадь требуемого радиатора по формуле A p = Q np /q np и Q пp = Q п - µ тр хQ тр:

А р =(1410-0,9х296)/809=1,41м 2 .

Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м 2:

м 2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / А р и определяем:

N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.

Пример №2

Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.

Определяет среднюю температуру воды в конвекторе:

tcp = (105 - 2) - 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.

В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м 2 .имеющиеся данные: µt cp =100,9-18=82,9°С, Gnp=300кг/ч. По формуле q пр =q ном (µ t ср /70) 1+n (G пр /360) p пересчитываем данные:

q np = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м 2 .

Определяем уровень теплоотдачи горизонтальных (1 г -=0,8 м) и вертикальных (l в =2,7 м) труб (с учетом D y 20) используя формулу Q тр = q в хl в +q г хl г. Получаем:

Q тр = 93х2,7 + 115х0,8 = 343 Вт.

Воспользовавшись формулой A p = Q np /q np и Q пp = Q п - µ тр хQ тр, определяем расчетную площадь конвектора:

А р =(1410 - 0,9х343) / 439 = 2,51 м 2 .

То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м 2).

Пример №3

Для системы парового отопления необходимо определить количество и длину чугунных ребристых труб при условии, что установка открытого типа и производится в два яруса. При этом избыточное давление пара составляет 0,02 Мпа.

Дополнительные характеристики: t нac = 104,25 °С, t в =15 °С, Q п = 6500 Вт, Q тр = 350 Вт.

Воспользовавшись формулой µ t н = t нас - t в, определим разность температур:

µ t н = 104,25- 15 = 89,25 °С.

Определяем плотность теплового потока, воспользовавшись известным коэффициентом передачи данного типа труб в случае, когда они устанавливаются параллельно одна над другой - к=5,8 Вт/(м2-°С). Получаем:

q np = k np х µ t н = 5,8-89,25 = 518 Вт/м 2 .

Формула A p = Q np /q np помогает определить необходимую площадь прибора:

А р = (6500 - 0,9х350) / 518 = 11,9м 2 .

Чтоб определить количество необходимых труб, N = A p / (nхa 1). При этом следует воспользоваться такими данными: длина одной тубы – 1,5 м, площадь нагревательной поверхности – 3м 2 .

Вычисляем: N= 11,9/(2х3,0) = 2 шт.

То есть, в каждом ярусе необходимо установить по две трубы длиной 1,5 м. каждая. При этом вычислим общую площадь данного отопительного прибора: А = 3,0х*2х2 = 12,0 м 2 .

Здравствуйте, уважаемые читатели! Сегодня небольшой пост про расчет количества тепла на отопление по укрупненным показателям. Вообще то нагрузка на отопление принимается по проекту, то есть в договор теплоснабжения вносятся те данные, которые просчитал проектировщик.

Но зачастую таких данных просто нет, особенно если здание небольшое, например гараж, или какое нибудь подсобное помещение. В этом случае нагрузку на отопление в Гкал/ч просчитывают по так называемым укрупненным показателям. Об этом я писал . И уже эта цифра идет в договор как расчетная отопительная нагрузка. Как же считается эта цифра? А считается она по формуле:

Qот = α*qо*V*(tв-tн.р)*(1+Kн.р)*0,000001; где

α — поправочный коэффициент, который учитывает климатические условия района, он применяется в тех случаях, когда расчетная температура воздуха на улице отличается от -30 °С;

qо — удельная отопительная характеристика здания при tн.р = -30 °С, ккал/куб.м*С;

V — объем здания по наружному обмеру, м³ ;

tв — расчетная температура внутри отапливаемого здания, °С;

tн.р — расчетная температура наружного воздуха для проектирования отопления, °С;

Kн.р — коэффициент инфильтрации, который обусловлен тепловым и ветровым напором, то есть соотношением тепловых потерь зданием с инфильтрацией и теплопередачей через наружные ограждения при температуре воздуха на улице, которая является расчетной для проектирования отопления.

Вот так, в одну формулу можно посчитать тепловую нагрузку на отопление любого здания. Конечно, расчет этот в значительной степени приближенный, однако он рекомендуется в технической литературе по теплоснабжению. Теплоснабжающие организации также вносят эту цифру отопительной нагрузки Qот, в Гкал/ч, в договоры теплоснабжения. Так что расчет нужный. Расчет этот хорошо представлен в книге — В.И.Манюк, Я.И.Каплинский, Э.Б.Хиж и др. «Справочник по наладке и эксплуатации водяных тепловых сетей». Эта книжка у меня одна из настольных, очень хорошая книга.

Также этот расчет тепловой нагрузки на отопление здания можно делать по «Методике определения количеств тепловой энергии и теплоносителя в водяных системах коммунального водоснабжения» РАО «Роскоммунэнерго» Госстроя России. Правда, в расчете в этой методике есть неточность (в формуле 2 в приложении №1 указано 10 в минус третьей степени, а должно быть 10 в минус шестой степени, в расчетах это необходимо учитывать), более подробно об этом можно прочитать в комментариях к этой статье.

Я этот расчет полностью автоматизировал, добавил справочные таблицы, в том числе таблицу климатических параметров всех регионов бывшего СССР (из СНиП 23.01.99 «Строительная климатология»). Приобрести расчет в виде программы за 100 рублей можно, написав мне по электронной почте [email protected].

Буду рад комментариям к статье.

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м² . В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м . Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм . Для него λ=0,036 . Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.