Направлена скорость движении по окружности. Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения удобно рассматривать угловое перемещение Δφ (или угол поворота ), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

При малых углах поворота Δl ≈ Δs .

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt →0) отношения малого углового перемещения Δφ к малому промежутку времени Δt :

Угловая скорость измеряется в рад/с .

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением . Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости за малый промежуток времени Δt . По определению ускорения

Векторы скоростей и в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA B = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB | =Δs ≈ υΔt . Так как |OA | = R и |CD | = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt →0, получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где - радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная ) составляющая ускорения (см 1.1):

В этой формуле Δυ τ = υ 2 - υ 1 - изменение модуля скорости за промежуток времени Δt .

Направление вектора полного ускорения определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Закон. Все движения происходят одинаково в покоящихся системах отсчета, или движущихся относительно друг друга с постоянной скоростью. Это принцип одинаковости или равнозначности инерциальных систем отсчета или принцип независимости Галилея.

Общие законы движения

1 Закон. Если на тело не действуют другие тела, оно сохраняет состояние покоя или равномерного прямолинейного движения. Это закон инерции, первый закон Ньютона.

3 Закон. Все движения материального тела происходят независимо друг от друга и складываются как векторные величины. Так любое тело на земле одновременно участвует в движении Солнца с планетами вокруг Центра Галактики со скоростью около 200 км./сек, в движении Земли по орбите со скоростью около 30 км/сек, во вращении Земли вокруг своей оси со скоростью до 400 м /сек и возможно в других движениях. Получается весьма замысловатая криволинейная траектория!

Если тело брошено с начальной скоростью Vo, под углом a к горизонту то дальность полета –S вычисляется по формуле:

S = 2 V*SIN(a) * COS(a) / g = V*SIN(2a) / g

Максимальная дальность при a =45 градусов. Максимальная высота полета –h вычисляется по формуле:

h = V* SIN(a)/2g

Обе эти формулыможно получить, если учесть, что вертикальная составляющая Vo*SIN(a), а горизонтальная Vo* COS(a), V =g*t, t =V/g.

Cделаем подстановку в основную формулу для высоты

h = g t/2 = g* (V/g)/2 = V/2g = V* SIN(a)/2g.

Это и есть нужная формула. Максимальная высота при бросании вертикально вверх, при этом

a =90 градусов, SIN(a) =1; h = V*/2g

Для вывода формулы дальности полета нужно горизонтальную составляющую умножить на удвоенное время падения с высоты h. Если учитывать сопротивление воздуха, то путь будет короче. Для снаряда, например, почти вдвое. Одной и той же дальности будут соответствовать два разных угла бросания.



Рис.11 Траектории полета тела брошенного под углом к горизонту. Рисунок справа движение по окружности.

w- Угловая скорость вращающегося тела; радиан / сек

b -Угловое положение вращающегося тела; радианы или градусы относительно оси. Радиан это угол под которым видна из центра окружности дуга равная радиусу окружности, соответственно рад=360/6,28 = 57,32 градусов

а-угловое ускорение измеряется в рад/сек 2

b = bо + w * t, Угловое перемещение отbо.

S = b *R - Линейное преремещение по окружности радиусаR.

w =(b - bо)/(t –to); - Угловая скорость. V = w* R – Скорость по окружности

T = 2*p/w =2*p*R/V Отсюда V = 2*p*R/T

a =ao + w/t – Угловое ускорение. Угловое ускорение определяется тагенциальной силой и при ее отсутствии будет равномерное движение тела по окружности. При этом на тело действует центростремительное ускорение, которое в течение оборота изменяет скорость в 2*p раз. Его величина определиться формулой. a =DV/T =2*p*V/2*p*R/V =V/R



Средние величины скорости и ускорения не позволяют рассчитать положение тела при неравномерном движении. Для этого необходимо знать значения скорости и ускорения в короткие промежутки времени или мгновенные значения. Мгновенные значения определяются через производные или дифференциалы.

1. Достаточно часто можно наблюдать такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов, ребенок, сидящий на какой‑либо фигуре вращающихся каруселей.

При движении по окружности может изменяться не только направление скорости тела, но и ее модуль. Возможно движение, при котором изменяется только направление скорости, а ее модуль остается постоянным. Такое движение называют равномерным движением тела по окружности . Введем характеристики этого движения.

2. Движение тела по окружности повторяется через определенные промежутки времени, равные периоду обращения.

Периодом обращения называют время, в течение которого тело совершает один полный оборот.

Период обращения обозначают буквой T . За единицу периода обращения в СИ принята секунда (1 с ).

Если за время t тело совершило N полных оборотов, то период обращения равен:

T = .

Частотой обращения называют число полных оборотов тела за одну секунду.

Частоту обращения обозначают буквой n .

n = .

За единицу частоты обращения в СИ принята секунда в минус первой степени (1 с– 1 ).

Частота и период обращения связаны следующим образом:

n = .

3. Рассмотрим величину, характеризующую положение тела на окружности. Пусть в начальный момент времени тело находилось в точке A , а за время t оно переместилось в точку B (рис. 38).

Проведем радиус‑вектор из центра окружности в точку A и радиус‑вектор из центра окружности в точку B . При движении тела по окружности радиус‑вектор повернется за время t на угол j. Зная угол поворота радиуса‑вектора, можно определить положение тела на окружности.

Единица угла поворота радиуса‑вектора в СИ - радиан (1 рад ).

При одном и том же угле поворота радиуса‑вектора точки A и B , находящиеся на разных расстояниях от его центра равномерно вращающегося диска (рис. 39), пройдут разные пути.

4. При движении тела по окружности мгновенную скорость называют линейной скоростью .

Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, меняется по направлению и в любой точке направлена по касательной к траектории.

Модуль линейной скорости можно определить по формуле:

v = .

Пусть тело, двигаясь по окружности радиусом R , совершило один полный оборот, Тогда пройденный им путь равен длине окружности: l = 2pR , а время равно периоду обращения T . Следовательно, линейная скорость тела:

v = .

Поскольку T = , то можно записать

v = 2pRn .

Быстроту обращения тела характеризуют угловой скоростью .

Угловой скоростью называют физическую величину, равную отношению угла поворота радиуса-вектора к промежутку времени, за которое этот поворот произошел.

Угловая скорость обозначается буквой w.

w = .

За единицу угловой скорости в СИ принимают радиан в секунду (1 рад/с ):

[w] == 1 рад/с.

За время, равное периоду обращения T , тело совершает полный оборот и угол поворота радиуса-вектора j = 2p. Поэтому угловая скорость тела:

w =или w = 2pn .

Линейная и угловая скорости связаны друг с другом. Запишем отношение линейной скорости к угловой:

== R .

Таким образом,

v = wR .

При одинаковой угловой скорости точек A и B , расположенных на равномерно вращающемся диске (см. рис. 39), линейная скорость точки A больше линейной скорости точки B : v A > v B .

5. При равномерном движении тела по окружности модуль его линейной скорости остается постоянным, а направление скорости меняется. Поскольку скорость - величина векторная, то изменение направления скорости означает, что тело движется по окружности с ускорением.

Выясним, как направлено и чему равно это ускорение.

Напомним, что ускорение тела определяется по формуле:

a == ,

где Dv - вектор изменения скорости тела.

Направление вектора ускорения a совпадает с направлением вектора Dv .

Пусть тело, движущееся по окружности радиусом R , за ма-лый промежуток времени t переместилось из точки A в точку B (рис. 40). Чтобы найти изменение скорости тела Dv , в точку A перенесем параллельно самому себе вектор v и вычтем из него v 0 , что равноценно сложению вектора v с вектором –v 0 . Вектор, направленный от v 0 к v , и есть вектор Dv .

Рассмотрим треугольники AOB и ACD . Оба они равнобедренные (AO = OB и AC = AD, поскольку v 0 = v ) и имеют равные углы: _AOB = _CAD (как углы со взаимно перпендикулярными сторонами: AO B v 0 , OB B v ). Следовательно, эти треугольники подобны и можно записать отношение соответствующих сторон:= .

Поскольку точки A и B расположены близко друг к другу, то хорда AB мала и ее можно заменить дугой. Длина дуги- путь, пройденный телом за время t с постоянной скоростью v : AB = vt .

Кроме того, AO = R , DC = Dv , AD = v . Следовательно,

= ;= ;= a .

Откуда ускорение тела

a = .

Из рисунка 40 видно, что чем меньше хорда AB , тем точнее направление вектора Dv совпадает с радиусом окружности. Следовательно, вектор изменения скорости Dv и вектор ускорения a направлены по радиусу к центру окружности. Поэтому ускорение при равномерном движении тела по окружности называют центростремительным .

Таким образом,

при равномерном движении тела по окружности его ускорение постоянно по модулю и в любой точке направлено по радиусу окружности к ее центру.

Учитывая, что v = wR , можно записать другую формулу центростремительного ускорения:

a = w 2 R .

6. Пример решения задачи

Частота обращения карусели 0,05 с– 1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

Дано :

Решение

n = 0,05 с– 1

R = 4 м

Центростремительное ускорение равно:

a = w2R =(2pn )2R =4p2n 2R .

Период обращения: T = .

Угловая скорость карусели: w = 2pn .

a ?

T ?

a = 4 (3,14) 2 (0,05с– 1) 2 4 м 0,4 м/с 2 ;

T == 20 с;

w = 2 3,14 0,05 с– 1 0,3 рад/с.

Ответ: a 0,4 м/с 2 ; T = 20 с; w 0,3 рад/с.

Вопросы для самопроверки

1. Какое движение называют равномерным движением по окружности?

2. Что называют периодом обращения?

3. Что называют частотой обращения? Как связаны между собой период и частота обращения?

4. Что называют линейной скоростью? Как она направлена?

5. Что называют угловой скоростью? Что является единицей угловой скорости?

6. Как связаны угловая и линейная скорости движения тела?

7. Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

Задание 9

1. Чему равна линейная скорость точки обода колеса, если радиус колеса 30 см и один оборот она совершает за 2 с? Чему равна угловая скорость колеса?

2. Скорость автомобиля 72 км/ч. Каковы угловая скорость, частота и период обращения колеса автомобиля, если диаметр колеса70 см? Сколько оборотов совершит колесо за 10 мин?

3. Чему равен путь, пройденный концом минутной стрелки будильника за 10 мин, если ее длина 2,4 см?

4. Каково центростремительное ускорение точки обода колеса автомобиля, если диаметр колеса 70 см? Скорость автомобиля 54 км/ч.

5. Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ, ХАРАКТЕРИЗУЮЩИЕ ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ.

1.ПЕРИОД (Т)-промежуток времени, за который тело совершает один полный оборот.

, где t-время, в течение которого совершено N оборотов.

2. ЧАСТОТА ()- число оборотов N, совершаемых телом за единицу времени.

(герц)

3. СВЯЗЬ ПЕРИОДА И ЧАСТОТЫ:

4. ПЕРЕМЕЩЕНИЕ () направлено по хордам.

5.УГЛОВОЕ ПЕРЕМЕЩЕНИЕ (угол поворота ).

РАВНОМЕРНОЕ ДВИЖЕНИЕ ПО ОКРУЖНОСТИ - это такое движение при котором модуль скорости не изменяется.

6. ЛИНЕЙНАЯ СКОРОСТЬ ( направлена по касательной к окружности.

7. УГЛОВАЯ СКОРОСТЬ

8. СВЯЗЬ ЛИНЕЙНОЙ И УГЛОВОЙ СКОРОСТИ

Угловая скорость не зависит от радиуса окружности, по которой движется тело. Если в задаче рассматривается движение точек, расположенных на одном диске, но на разном расстоянии от его центра, то надо иметь в виду, что УГЛОВАЯ СКОРОСТЬ ЭТИХ ТОЧЕК ОДИНАКОВА.

9. ЦЕНТРОСТРЕМИТЕЛЬНОЕ (нормальное) УСКОРЕНИЕ ().

Т. к. при движении по окружности постоянно изменяется направление вектора скорости, то движение по окружности происходит с ускорением. Если тело движется по окружности равномерно, то оно обладает только центростремительным (нормальным) ускорением, которое направлено по радиусу к центру окружности. Ускорение называется нормальным, так как в данной точке вектор ускорения расположен перпендикулярно (нормально) к вектору линейной скорости. .

Если тело движется по окружности с изменяющейся по модулю скоростью, то наряду с нормальным ускорением, характеризующим изменение скорости по направлению, появляется ТАНГЕНЦИАЛЬНОЕ УСКОРЕНИЕ, характеризующее изменение скорости по модулю (). Направлено тангенциальное ускорение по касательной к окружности. Полное ускорение тела при неравномерном движении по окружности определится по теореме Пифагора:

ОТНОСИТЕЛЬНОСТЬ МЕХАНИЧЕСКОГО ДВИЖЕНИЯ

При рассмотрении движения тела относительно разных систем отсчета траектория, путь, скорость, перемещение оказываются различными. Например, человек сидит в движущемся автобусе. Его траектория относительно автобуса - точка, а относительно Солнца - дуга окружности, путь, скорость, перемещение относительно автобуса равны нулю, а относительно Земли отличны от нуля. Если рассматривается движение тела относительно подвижной и неподвижной систем отсчета, то согласно классического закона сложения скоростей скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной :

Аналогично

ЧАСТНЫЕ СЛУЧАИ ИСПОЛЬЗОВАНИЯ ЗАКОНА СЛОЖЕНИЯ СКОРОСТЕЙ

1) Движение тел относительно Земли

б) тела движутся навстречу друг другу

2) Движение тел относительно друг друга

а) тела движутся в одном направлении

б) тела движутся в разных направлениях (навстречу друг другу)

3) Скорость тела относительно берега при движении

а) по течению

б) против течения , где - скорость тела относительно воды, - скорость течения.

4) Скорости тел направлены под углом друг к другу.

Например: а) тело переплывает реку, двигаясь перпендикулярно течению

б) тело переплывает реку, двигаясь перпендикулярно берегу

в) тело одновременно участвует в поступательном и вращательном движении, например, колесо движущегося автомобиля. Каждая точка тела имеет скорость поступательного движения, направленную в сторону движения тела и - скорость вращательного движения, направленную по касательной к окружности. Причем, Чтобы найти скорость любой точки относительно Земли необходимо векторно сложить скорость поступательного и вращательного движения:


ДИНАМИКА

ЗАКОНЫ НЬЮТОНА

ПЕРВЫЙ ЗАКОН НЬЮТОНА (ЗАКОН ИНЕРЦИИ)

Существуют такие системы отсчета, относительно которых тело находится в покое или движется прямолинейно и равномерно, если на него не действуют другие тела или действия тел компенсируются (уравновешиваются).

Явление сохранения скорости тала при отсутствии действия на него других тел или при компенсации действия других тел называется инерцией.

Системы отсчета, в которых выполняются законы Ньютона, называются инерциальными системами отсчета (ИСО). К ИСО относятся системы отсчета связанные с Землей или не имеющие ускорения относительно Земли. Системы отсчета, движущиеся с ускорением относительно Земли, являются неинерциальными, в них законы Ньютона не выполняются. Согласно классическому принципу относительности Галилея все ИСО равноправны, законы механики имеют одинаковую форму во всех ИСО, все механические процессы протекают одинаково во всех ИСО (никакими механическими опытами, проведенными внутри ИСО, нельзя определить находится она в покое или движется прямолинейно и равномерно).

ВТОРОЙ ЗАКОН НЬЮТОНА

Скорость тела изменяется при действии на тело силы. Любое тело обладает свойством инертности. Инертность – это свойство тел, состоящее в том, что для изменения скорости тела требуется время, скорость тела мгновенно измениться не может. То тело, которое больше изменяет свою скорость при действии одинаковой силы, является менее инертным. Мерой инертности служит масса тела.

Ускорение тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела.

Сила и ускорение всегда сонаправлены. Если на тело действуют несколько сил , то ускорение телу сообщает равнодействующая этих сил (), которая равна векторной сумме всех сил, действующих на тело:

Если тело совершает равноускоренное движение, то на него действует постоянная сила.

ТРЕТИЙ ЗАКОН НЬЮТОНА

Силы возникают при взаимодействии тел.

Тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению.

Особенности сил, возникающих при взаимодействии:

1. Силы всегда возникают парами.

2 Силы, возникающие при взаимодействии, имеют одну природу.

3.Силы, не имеют равнодействующей, т. к. приложены к разным телам.

СИЛЫ В МЕХАНИКЕ

СИЛА ВСЕМИРНОГО ТЯГОТЕНИЯ-сила, с которой притягиваются все тела во Вселенной.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ: тела притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.

(формулой можно пользоваться для расчета притяжения точечных тел и шаров), где G-гравитационная постоянная (постоянная всемирного тяготения), G=6,67·10 -11 , -массы тел, R-расстояние между телами, измеряется между центрами тел.

СИЛА ТЯЖЕСТИ – сила притяжения тел к планете. Сила тяжести вычисляется по формулам:

1) , где - масса планеты, - масса тела, - расстояние между центром планеты и телом.

2) , где - ускорение свободного падения,

Сила тяжести всегда направлена к центру тяжести планеты.

Радиус орбиты искусственного спутника, - радиус планеты, - высота спутника над поверхностью планеты,

Тело становится искусственным спутником, если ему в горизонтальном направлении сообщить необходимую скорость. Скорость, необходимая для того, чтобы тело двигалось по круговой орбите вокруг планеты, называется первой космической скоростью . Чтобы получить формулу для вычисления первой космической скорости, необходимо помнить, что все космические тела, в том числе и искусственные спутники, движутся под действием силы всемирного тяготения , кроме того, скорость – величина кинематическая, «мостиком» в кинематику может служить формула, следующая из второго закона Ньютона Приравнивая правые части формул, получаем: или Учитывая, что тело движется по окружности и поэтому обладает центростремительным ускорением , получаем: или . Отсюда - формула для вычисления первой космической скорости . Учитывая, что формулу для расчета первой космической скорости можно записать в виде: .Аналогично, используя второй закон Ньютона и формулы криволинейного движения, можно определить, например, период обращения тела по орбите.

СИЛА УПРУГОСТИ – сила, действующая со стороны деформированного тела и направленная в сторону, противоположную смещению частиц при деформации. Силу упругости можно вычислить с помощью закона Гука: сила упругости прямо пропорциональна удлинению: где - удлинение,

Жесткость, . Жесткость зависит от материала тела, его формы и размеров.

СОЕДИНЕНИЕ ПРУЖИН

Закон Гука выполняется только при упругих деформациях тел. Упругими называются деформации, при которых после прекращения действия силы тело приобретает прежние форму и размеры.

При описании движения точки по окружности мы будем характеризовать перемещение точки углом Δφ , который описывает радиус-вектор точки за время Δt . Угловое перемещение за бесконечно малый промежуток времени dt обозначается .

Угловое перемещение – величина векторная. Определяется направление вектора (или ) по правилу буравчика: если вращать буравчик (винт с правосторонней резьбой) в направлении движения точки, то буравчик будет двигаться в направлении вектора углового смещения. На рис. 14 точка М движется по часовой стрелке, если смотреть на плоскость движения снизу. Если крутить буравчик в этом направлении, то вектор будет направлен вверх.

Таким образом, направление вектора углового перемещения определяется выбором положительного направления вращения. Положительное направление вращения определяется правилом буравчика с правосторонней резьбой. Однако с таким же успехом можно было взять буравчик с левосторонней резьбой. В этом случае направление вектора углового смещения было бы противоположным.

При рассмотрении таких величин, как скорость, ускорение, вектор смещения не возникал вопрос о выборе их направления: оно определялось естественным образом из природы самих величин. Такие вектора называются полярными. Вектора, подобные вектору углового перемещения, называются аксиальными, или псевдовекторами . Направление аксиального вектора определяется выбором положительного направления вращения. Кроме того, аксиальный вектор не имеет точки приложения. Полярные векторы , которые мы рассматривали до сих пор, приложены к движущейся точке. Для аксиального вектора можно лишь указать направление (ось, axis – лат.), вдоль которой он направлен. Ось, вдоль которой направлен вектор углового смещения, перпендикулярна плоскости вращения. Обычно вектор углового перемещения изображают на оси, проходящей через центр окружности (рис. 14), хотя его можно нарисовать в любом месте, в том числе на оси, проходящей через рассматриваемую точку.

В системе СИ углы измеряются в радианах. Радиан – это такой угол, длина дуги которого равна радиусу окружности. Таким образом, полный угол (360 0) равен 2π радиан.

Движение точки по окружности

Угловая скорость – векторная величина, численно равная углу поворота за единицу времени. Обозначается обычно угловая скорость греческой буквой ω. По определению, угловая скорость – это производная угла по времени:

. (19)

Направление вектора угловой скорости совпадает с направлением вектора углового перемещения (рис. 14). Вектор угловой скорости, так же, как и вектор углового перемещения, является аксиальным вектором.


Размерность угловой скорости – рад/с.

Вращение с постоянной угловой скоростью называется равномерным, при этом ω = φ/t.

Равномерное вращение можно характеризовать периодом обращения Т, под которым понимают время, за которое тело делает один оборот, т. е. поворачивается на угол 2π. Поскольку промежутку времени Δt = Т соответствует угол поворота Δφ = 2π, то

(20)

Число оборотов в единицу времени ν, очевидно, равно:

(21)

Величина ν измеряется в герцах (Гц). Один герц – это один оборот в секунду, или 2π рад/с.

Понятия периода обращения и числа оборотов в единицу времени можно сохранить и для неравномерного вращения, понимая под мгновенным значением T то время, за которое тело совершило бы один оборот, если бы оно вращалось равномерно с данным мгновенным значением угловой скорости, а под ν понимая то число оборотов, которое совершало бы тело за единицу времени при аналогичных условиях.

Если угловая скорость меняется со временем, то вращение называется неравномерным. В этом случае вводят угловое ускорение аналогично тому, как для прямолинейного движения вводилось линейное ускорение. Угловое ускорение – это изменение угловой скорости за единицу времени, вычисляется как производная угловой скорости по времени или вторая производная углового смещения по времени:

(22)

Так же, как и угловая скорость, угловое ускорение является векторной величиной. Вектор углового ускорения – аксиальный вектор, в случае ускоренного вращения направлен в ту же сторону, что и вектор угловой скорости (рис. 14); в случае замедленного вращения вектор углового ускорения направлен противоположно вектору угловой скорости.

При равнопеременном вращательном движении имеют место соотношения, аналогичные формулам (10) и (11), описывающим равнопеременное прямолинейное движение:

ω = ω 0 ± εt,

.