Предварительно напряженные железобетонные конструкции. Предварительно напряженный железобетон в конструкциях мостов Принцип работы предварительно напряженной железобетонной конструкции

Напряженный бетон

Диаграмма преднапряжения

Предварительно напряжённый железобетон (преднапряжённый железобетон ) - это строительный материал, предназначенный для преодоления неспособности бетона сопротивляться значительным растягивающим напряжениям .

При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается специальным устройством и заливается бетонной смесью. После схватывания сила предварительного натяжения освобождённой стальной проволоки или троса передаётся окружающему бетону, так что он оказывается сжатым. Такое создание напряжений сжатия позволяет частично или полностью устранить растягивающие напряжения от нагрузки.

Способы натяжения арматуры:

Grants Pass, преднапряжённый железобетонный мост в ботаническом саду, Oregon, USA

Предварительное напряжение может производиться не только до, но и после схватывания бетонной смеси. Чаще этот метод применяется при строительстве мостов с большими пролётами, где один пролёт изготавливается в несколько этапов (захваток) . Материал из стали (трос или арматура) укладывается в форму для бетонирования в чехле (гофрированная тонкостенная металлическая или пластиковая труба). После изготовления монолитной конструкции трос (арматуру) специальными механизмами (домкратами) натягивают до определённой степени. После чего в чехол с тросом (арматурой) закачивается жидкий цементный (бетонный) раствор. Таким образом обеспечивается прочное соединение сегментов пролёта моста.

Примечания

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Напряженный бетон" в других словарях:

    Предварительно напряженный бетон - бетон с искусственно созданным напряжением, повышающим жесткость конструкции. (Архитектура: иллюстрированный справочник, 2005) … Архитектурный словарь

    БЕТОН, твердый и прочный строительный материал, получаемый из смеси портланд ЦЕМЕНТА, песка, гравия и воды. Имеет очень важное значение как при возведении больших построек, так и для изготовления отдельных элементов, например, плит и труб. Бетону … Научно-технический энциклопедический словарь

    Диаграмма преднапряжения Предварительно напряжённый железобетон (преднапряжённый железобетон) это строительный материал, предназначенный для преодоления неспособности бетона сопротивляться значительным растягивающим напряжениям. При… … Википедия

    Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и… … Энциклопедия Кольера

    Диаграмма преднапряжения Предварительно напряжённый железобетон (преднапряжённый железобетон) это строительный материал, предназначенный для преодоления неспособности б … Википедия

    Железобетон - искусственный строительный материал, состоящий из стального арматурного каркаса залитого бетоном и конструктивно объединяющий рабочие свойства стали и бетона. При этом арматура работает на растяжение, а бетон – на сжатие. [Словарь архитектурно… …

    Железобетон предварительно напряжённый - Железобетон предварительно напряженный – сборные или монолитные железобетонные конструкции, арматуру которых напрягают до заданного расчётного значения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]… … Энциклопедия терминов, определений и пояснений строительных материалов

    Проектирование и строительство военных объектов, коммуникаций, укреплений и мостов, обеспечение войск водой, энергией и вспомогательными средствами, применение или обезвреживание обычных взрывчатых средств, в том числе мин, в целях облегчения… … Энциклопедия Кольера

    Данная статья содержит глоссарий русскоговорящих игроков в букмекерских конторах и объединяет в себе специализированные термины спортивного беттинга, а также слова и выражения, используемые для экспрессивной окраски того или иного явления,… … Википедия

Под предварительно напряженными понимают железобетонные конструкции, элементы, изделия, в которых предварительно, т. е. в процессе изготовления, искусственно созданы в соответствии с расчетом начальные напряжения растяжения в части или во всей рабочей арматуре и обжатие всего или части бетона .

Обжатие бетона в предварительно напряженных конструкциях на заданную величину осуществляется предварительно натянутой арматурой, стремящейся после отпуска натяжных устройств возвратиться в первоначальное состояние (рис. 14). При этом проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, а при недостаточности естественного сцепления - специальной искусственной анкеровкой торцов арматуры в бетоне. Начальное предварительное напряжение арматуры, создаваемое в результате искусственного натяжения арматуры, после отпуска натяжных устройств снижается за счет относительного упругого обжатия бетона.

С течением длительного времени потери предварительного напряжения арматуры существенно увеличиваются за счет усадки и ползучести бетона и арматуры, релаксации напряжений арматуры и многих других факторов.

Сущность предварительно напряженных железобетонных конструкций нетрудно проследить, например, посредством сопоставления диаграмм, центральнорастянутых элементов соответственно с напрягаемой и ненапрягаемой арматурой (рис. 15). Арматура, стараясь возвратиться в первоначальное положение, обжимает бетон с напряжением (рис, 15, б ).

При этом образец (рис. 15, в) сожмется на величину упругого обжатия бетона (для большей наглядности принимаем, что потери предварительного напряжения арматуры от усадки и ползучести бетона, ползучести арматуры, релаксации напряжений стали еще не успели проявиться).

Установившееся предварительное напряжение растяжения в арматуре, (рис. 15, а, точка 2), будет уравновешиваться напряжением предварительного обжатия бетона (рис. 15, б и в).

С этими предварительными напряжениями в арматуре и в бетоне железобетонный элемент (см. рис. 15, в) поступает на строительную площадку.

Рассмотрим принципиальное отличие предварительно напряженных конструкций от конструкций без предварительного напряжения.

Еще до приложения внешней нагрузки в арматуре предварительно напряженных конструкций действуют значительные предварительные напряжения растяжения (см. рис. 15, а, точка 2), обжимающие бетон элементов (см. рис. 15, б и в).

Внешняя растягивающая сила N (рис. 15, г) вызывает относительное удлинение предварительно напряженного элемента. Вследствие этого предварительное обжатие бетона погасится.

С возрастанием внешней нагрузки N будет возрастать е вплоть до величины упругого обжатия бетона.


При величине внешней силы N, равной силе предварительного напряженияарматуры (рис. 15, д), происходит полное погашение предварительного обжатия бетона. С дальнейшим возрастанием внешней нагрузки в бетоне появятся растягивающие напряжения, которые будут возрастать вплоть до расчетного сопротивления (предела прочности бетона на растяжение) (рис 15, е), точно так же, как и в железобетонных элементах (см. рис. 15, а, кривая III), без предварительного напряжения. Как только относительное удлинение бетона достигнет предельной величины, в предварительно напряженном элементе, как и в железобетонном элементе без предварительного напряжения, появится трещина.

Следовательно, трещиностойкость предварительно напряженных конструкций в 2…3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона. Точка 9 характеризует образование трещин в железобетонных конструкциях, а точка 11 — в предварительно напряженных конструкциях.

Чем выше натяжение арматуры и сильнее обжатие бетона, тем меньше участок 12... 13, на котором происходит образование и раскрытие трещин. При совпадении точек 12 и 13 трещины в предварительно напряженном элементе не образуются вплоть до разрыва арматуры. При растяжении железобетонного элемента бетон может деформироваться совместно с арматурой только в пределах участка 0...9 (см. рис. 15, а), а на протяжении участка 9...13 и далее в нем происходит образование новых трещин и раскрытие старых.

Прочность предварительно напряженных конструкций не зависит от величин предварительного напряжения арматуры. Вот почему расчет на прочность любых предварительно напряженных конструкций ничем не отличается от расчета на прочность железобетонных конструкций без предварительного напряжения.

Все сказанное позволяет заключить, что природа предварительно напряженных конструкций та же, что и железобетонных конструкций без предварительного напряжения. Создание предварительных напряжений растяжения в арматуре и обжатия бетона до приложения эксплуатационных нагрузок не оказывает значительного влияния на основные физико-механические свойства железобетона.

Предварительно напряженные конструкции являются общим видом железобетонных конструкций, а железобетонные конструкции без предварительного напряжения являются всего лишь их частным случаем. При этом необходимо иметь в виду, что предварительное обжатие бетона существенно повышает трещиностойкость наклонных сечений и границу переармирования и заметно может понизить прочность сжатой зоны сечения.

Преимущества.

В предварительно напряженных конструкциях представляется возможность использовать высокоэкономичную стержневую арматуру повышенной прочности и высокопрочную проволочную арматуру, позволяющих в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

Предварительно напряженные конструкции часто оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций. Применение предварительного напряжения позволяет наиболее рационально выполнять стыки сборных элементов конструкций, обжимая их напрягаемой арматурой. При этом существенно сокращается расход дополнительного металла в стыках или совсем отпадает необходимость в его применении.

Предварительное напряжение позволяет расширить использование сборных и сборно-монолитных конструкций составного течения, в которых бетон повышенной прочности применяется только в заранее изготовленных предварительно напряженных элементах, а основная или значительная часть конструкций выполняется из тяжелого или легкого бетона, не подвергаемого предварительному напряжению.

Предварительное напряжение, увеличивающее сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные предварительно напряженные конструкции безопасны в эксплуатации, так как показывают перед разрушением значительные прогибы, предупреждающие об аварийном состоянии конструкций.

С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается (особенно при тавровых сечениях с полкой в сжатой зоне и легких бетонах). Это объясняется тем, что благодаря применению более прочных и легких материалов сечения предварительно напряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а следовательно, более гибкими и легкими. Повышению сейсмостойкости способствует также пространственная работа зданий и сооружений в целом, получаемая обжатием их отдельных частей предварительно напряженной арматурой. Наиболее сейсмостойкими являются напряженные конструкции, обладающие существенным превышением несущей способности над пределом трещиностойкости.

Недостатки.

Железобетонным конструкциям с предварительно напряженной арматурой присущи следующие основные недостатки.

Предварительно напряженные конструкции характеризуются повышенной трудоемкостью проектирования и изготовления. Они требуют большей тщательности в расчете и конструировании, при изготовлении, хранении, транспортировании и монтаже, так как еще до приложения внешних нагрузок в сечениях их элементов могут возникнуть недопустимые сжимающие или растягивающие напряжения, способные привести в аварийное состояние. Например, в торцах предварительно напряженных конструкций при сосредоточенном и неравномерном приложении усилий обжатия могут возникнуть продольные трещины, существенно снижающие их несущую способность. Если не учитывать специфические особенности создания предварительного напряжения, то условия работы под нагрузкой всей конструкции или отдельных ее частей могут ухудшаться.

Большие усилия, передаваемые напрягаемой арматурой на бетон конструкции в момент отпуска натяжных устройств, могут привести к полному разрушению ее в процессе обжатия или местному повреждению, к проскальзыванию напрягаемой арматуры вследствие нарушения ее сцепления с бетоном. Поэтому нормы требуют в обязательном порядке тщательно проверять прочность предварительно напряженных конструкций в стадии обжатия, при хранении, транспортировке и монтаже и выполнять предусмотренные конструктивные требования. Предварительно напряженные конструкции требуют усложнения и повышения металлоемкости опалубки, трудоемкости армирования, увеличения расхода металла на закладные детали и на монтажную арматуру.

За счет применения материалов повышенной прочности масса предварительно напряженных конструкций оказывается значительно меньше массы железобетонных конструкций без предварительного напряжения, однако она остается выше массы металлических и особенно деревянных конструкций. Широкое внедрение в практику строительства конструкций из легких и ячеистых бетонов, армоцемента, ажурных тонкостенных пространственных, сетчатых и висячих конструкций позволяет значительно приблизить массу предварительно напряженных конструкций к массе металлических конструкций.

Большая тепло- и звукопроводность железобетона требует усложнения конструкции и дополнительного применения прокладок из тепло- и звукоизолирующих материалов.

Усиление предварительно напряженных конструкций не сложнее усиления железобетонных конструкций, но значительно сложнее усиления стальных и особенно деревянных конструкций. Производство работ по усилению предварительно напряженных конструкций отличается большой сложностью, трудоемкостью и стоимостью.

Предварительно напряженные конструкции несгораемы, но их огнестойкость ниже огнестойкости железобетонных конструкций без предварительного напряжения. Это связано с тем, что критические температуры, до которых возможно безопасное нагревание предварительно напряженной арматуры, ниже по сравнению с ненапрягаемой арматурой. Например, прочность высокопрочной проволоки, подвергнутой холодной обработке (имеющей наклеп), начиная с температуры 200°С, заметно понижается и при 600°С составляет около 2/3 первоначальной прочности. Стержневая арматура периодического профиля, упрочненная вытяжкой, теряет наклеп при температуре свыше 400 °С. Таким образом, при пожаре огнестойкость предварительно напряженных конструкций окажется обеспеченной, если не будет превышена критическая температура для данного типа арматуры. Достичь этого возможно только при увеличении защитного слоя бетона.

Нормы допускают применение предварительно напряженных конструкцийизтяжелого и легкого бетона на цементном вяжущем при систематическом периодическом воздействии повышенных (температура нагрева не должна изменяться более одного раза в сутки на 30°С и одного раза в неделю — на 100°) и стационарном воздействии технологических температур до 200°С. При больших температурах рекомендуется применение жаростойкого железобетона.

Предварительно напряженные конструкции отличаются недостаточной коррозийной стойкостью .

Коррозия цементного камня в бетоне может происходить за счет:

1) выщелачивания из него извести мягкими водами, обусловливающего образование на поверхности бетона белых подтеков («белая смерть» бетона);

2) образования растворимых и уносимых водой продуктов, связанных с обменными реакциями при действии на бетон растворов кислот и некоторых солей;

3) образования кристаллизующихся солей в порах и капиллярах бетонных элементов, например при действии растворов сульфатов, приводящих к растрескиванию элементов (цементная бацилла). Все три вида коррозии цементного камня снижают защитные свойства бетона по отношению к арматуре и могут вызвать опасную коррозию арматуры.

Коррозия арматуры может вознинуть также вследствие недостаточного содержания цемента в бетоне, наличия в нем вредных добавок (например, поваренной соли), раскрытия трещин более 0,4 мм, недостаточной толщины защитного слоя, малой плотности бетона. Коррозийные поражения резко снижают несущую способность и пластические свойства высокопрочной арматуры, вызывают растрескивание термически упрочненной арматуры, что вызывает внезапное хрупкое разрушение предварительно напряженных конструкций.

Основные мероприятия по защите железобетона от коррозии сводятся к следующему:

Предупреждение образования трещин или ограничение их раскрытия;

Ограничение степени агрессивности окружающей среды;

Применение плотных и водонепроницаемых бетонов на специальных сульфатостойких цементах;

Защита поверхностей разнообразными полимерными материалами, кислотоупорной штукатуркой, керамической облицовкой, оклеечной и обмазочной изоляцией;

Перерасход арматуры до 10...20%; увеличение защитного слоя бетона до 25 мм.

Нефть и ее погоны уменьшают сопротивление бетона растяжению, сжатию и сцепление с арматурой, вследствие чего бетон становится проницаемым для жидкостей.

Растительные и животные масла и жиры, особенно прогорклые, содержат жирную кислоту, которая омыляет известь бетона и образует разрушающее бетон известковое мыло.

Сахар, сиропы, патока образуют с известью растворимые соли — сахараты, которые быстро разрушают свежий бетон.

Спирты сами по себе не вредны, но извлекая из бетона воду, высушивают его и прекращают процесс твердения. Перечисленные основные недостатки железобетонных конструкций незначительны по сравнению с их многочисленными крупными достоинствами. Отрицательное влияние многих недостатков может быть существенно снижено высококачественными проектированием, изготовлением, монтажом и эксплуатацией железобетонных конструкций.

Вот почему, несмотря на короткую историю развития (~ 135 лет), они получили массовое распространение при строительстве самых ответственных и уникальных зданий и сооружений. Нет ни одной области капитального строительства, в которой с успехом не могли бы быть использованы современные железобетонные конструкции и особенно предварительно напряженные. При правильной эксплуатации железобетонные конструкции могут служить длительное время без снижения несущей способности, потому что прочность бетона возрастает с течением времени и он надежно защищает арматуру от коррозии.

(преднапряжённый железобетон ) - это строительный материал, предназначенный для преодоления неспособности бетона сопротивляться значительным растягивающим напряжениям . Конструкции из преднапряженного железобетона по сравнению с ненапряженным имеют значительно меньшие прогибы и повышенную трещиностойкость, обладая одинаковой прочностью, что позволяет перекрывать большие пролеты при равном сечении элемента.

При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается специальным устройством и укладывается бетонная смесь. После схватывания сила предварительного натяжения освобождённой стальной проволоки или троса передаётся окружающему бетону, так что он оказывается сжатым. Такое создание напряжений сжатия позволяет частично или полностью устранить растягивающие напряжения от эксплуатационной нагрузки.

Способы натяжения арматуры:

По виду технологии устройства подразделяется на:
  • натяжение на упоры (до укладки бетона в опалубку);
  • натяжение на бетон (после укладки и набора прочности бетона).

Чаще второй метод применяется при строительстве мостов с большими пролётами, где один пролёт изготавливается в несколько этапов (захваток) . Материал из стали (трос или арматура) укладывается в форму для бетонирования в каналообразователи (гофрированная тонкостенная металлическая или пластиковая труба). После изготовления монолитной конструкции трос (арматуру) специальными механизмами (домкратами) натягивают до определённой степени. После чего в каналообразователь с тросом (арматурой) закачивается жидкий цементный (бетонный) раствор. Таким образом обеспечивается прочное соединение сегментов пролёта моста.

В то время как натяжение на упоры подразумевает только прямолинейную форму натянутой арматуры, важной отличительной особенностью натяжения на бетон является возможность натяжения арматуры сложной формы, что повышает эффективность армирования. Например, в мостах арматурные элементы поднимаются внутри несущих железобетонных балок на участках над опорами-«быками», что позволяет более эффективно использовать их натяжение для предотвращения прогиба.

У истоков создания предварительно напряжённого железобетона стояли Эжен Фрейсине (Франция) и Виктор Васильевич Михайлов (Россия)

Предварительно напряжённый железобетон является главным материалом междуэтажных перекрытий высотных зданий и защитных гермооболочек ядерных реакторов , а также колонн и стен зданий в зонах повышенной сейсмо- и взрывоопасности .

Придавленная, как прессом , весом высокого аттика стена Колизея в Риме является свидетельством того, что еще архитекторы в древнем Риме понимали преимущества преднапряжения каменных конструкций, предназначенных для работы в условиях возможных землетрясений . Из блоков предварительно напряжённого железобетона сделана скульптура «Родина-мать » в Волгограде.

См. также

Напишите отзыв о статье "Предварительно напряжённый железобетон"

Примечания

Ссылки

  • .

Отрывок, характеризующий Предварительно напряжённый железобетон

– Ты ведь не можешь воевать с тем, чего ты не видишь или не понимаешь, не так ли, Изидора? – Не обращая внимания на моё возмущение, спокойно продолжил Север. – Вот так и он – он не видел и не чувствовал того, что внедрили когда-то в его мозг «тёмные», выбрав именно его своей беспомощной «жертвой». И вот, когда нужное для «тёмных» время пришло, «заказ» чётко сработал, несмотря на чувства или убеждения захваченного человека.
– Но ведь они были такими сильными, Рыцари Храма! Как же кто-то смог внедрить в них что-либо?!..
– Видишь ли, Изидора, сильным и умным быть не всегда достаточно. Иногда «тёмные» находят что-то такое, чего у намеченной жертвы просто не существует. И она, эта жертва, честно живёт до поры до времени, пока не срабатывает внедрённая в неё гадость, и пока человек не становится послушной куклой в руках «Думающих Тёмных». И даже тогда, когда внедрение срабатывает, бедная «жертва» не имеет о случившемся ни малейшего понимания... Это ужасный конец, Изидора. И я даже врагам такого не пожелал бы...
– Значит, что же – этот рыцарь не знал, какое страшное зло он сотворил с остальными?
Север отрицательно покачал головой.
– Нет, мой друг, он не знал до самой последней своей минуты. Он так и умер, веря, что прожил хорошую и добрую жизнь. И никогда не сумел понять, за что его друзья отвернулись от него, и за что он был изгнан ими из Окситании. Как бы они ни старались ему это объяснить... Желаешь ли услышать, как произошло это предательство, мой друг?
Я лишь кивнула. И Север терпеливо продолжил свою потрясающую историю...
– Когда церковь через того же рыцаря узнала, что Магдалина так же является ещё и Хранителем Умного Кристалла, у «святых отцов» возникло непреодолимое желание получить в свои руки эту удивительную силу. Ну и, естественно, желание уничтожить Золотую Марию умножилось в тысячи раз.
По великолепно рассчитанному «святыми отцами» плану, в день, кода должна была погибнуть Магдалина, предавшему её рыцарю в руки было вручено от посланника церкви письмо, якобы написанное самой Магдалиной. В этом злосчастном «послании» Магдалина «заклинала» первых Рыцарей Храма (своих самых близких друзей) никогда не пользоваться более оружием (даже при защите!), так же как и никаким другим, известным им способом, который мог бы отнять чью-то чужую жизнь. Иначе, – говорилось в письме, – при непослушании, Рыцари Храма потеряют Ключ Богов... так как окажутся его недостойными.

Это был абсурд!!! Это было самое лживое послание, которое им когда-либо приходилось слышать! Но Магдалины с ними уже не было... И никто не мог её более ни о чём спросить.
– Но разве они не могли после смерти с нею общаться, Север? – удивилась я. – Ведь насколько я знаю, многие Маги могут общаться с умершими?
– Не многие, Изидора... Многие могут видеть сущности после смерти, но не многие могут их точно слышать. Только один из друзей Магдалины мог с ней свободно общаться. Но именно он погиб всего через несколько дней после её смерти. Она приходила к ним сущностью, надеясь, что они увидят её и поймут... Она приносила им меч, стараясь показать, что должны бороться.
Какое-то время мнения Совершенных перевешивали то в одну, то в другую сторону. Их было теперь намного больше, и хотя остальные (ново пришедшие) никогда не слышали о Ключе Богов, «письмо Магдалины», по справедливости, было оглашено и им, пропуская не предназначавшиеся их уху строки.
Некоторые новые Совершенные, хотевшие жить поспокойнее, предпочитали верить «письму» Марии. Те же, которые сердцем и душой были преданы ей и Радомиру, не могли поверить в такую дикую ложь... Но и они так же боялись, что, ошибись в своём решении, и Ключ Богов, о котором они знали очень мало, мог просто исчезнуть. Тяжесть доверенного им Долга давила на их умы и сердца, рождая в них на какое-то время шаткую неуверенность и сомнения… Рыцари Храма, скрепя сердца, искренне пытались как-то принять это странное «послание». Тем более, что оно якобы являлось последним посланием, последней просьбой их Золотой Марии. И какой бы странной эта просьба ни казалась, они обязаны были ей подчиняться. Хотя бы самые ей близкие Храмовники... Как подчинились они когда-то последней просьбе Радомира. Ключ Богов теперь оставался с ними. И они отвечали за его сохранность своими жизнями... Но именно им, первым Рыцарям Храма, и было всего трудней – они слишком хорошо знали и помнили – Радомир был Воином, так же, как была воином и Мария. И ничто на свете не могло заставить их отвернуться от их изначальной Веры. Ничто не могло заставить забыть заповеди настоящих Катар.

ГОСТ 32803-2014

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ НАПРЯГАЮЩИЕ

Технические условия

Self-stressing concrete. General specifications


МКС 91.100.30

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН подразделением Открытого акционерного общества "Научно-исследовательский центр "Строительство" Ордена Трудового Красного Знамени Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (ОАО "НИЦ "Строительство" НИИЖБ им.А.А.Гвоздева)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 мая 2014 г. N 45-2014)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Киргизия

Кыргызстандарт

Молдова-Стандарт

Росстандарт

Таджикистан

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 26 ноября 2014 г. N 1830-ст межгосударственный стандарт ГОСТ 32803-2014 введен в действие в качестве национального стандарта Российской Федерации с 01 июля 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на напрягающие бетоны, предназначенные для создания предварительного напряжения (самонапряжения) в конструкциях зданий и сооружений за счет расширения в процессе твердения для повышения трещиностойкости, водонепроницаемости и долговечности конструкций и устанавливает технические требования к напрягающим бетонам.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные документы:

ГОСТ 9.306-85 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Обозначения

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 577-68 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 5578-94 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия

ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия

ГОСТ 6958-78 Шайбы увеличенные. Классы точности А и С. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 7798-70 Болты с шестигранной головкой класса точности В. Конструкция и размеры

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8736-93 Песок для строительных работ. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181-2000 Смеси бетонные. Методы испытаний

ГОСТ 11371-78 Шайбы. Технические условия

ГОСТ 12730.1-84* Бетоны. Методы определения плотности
________________
* На территории Российской Федерации действует ГОСТ 12730.1-78 , здесь и далее по тексту. - Примечание изготовителя базы данных.

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 17711-93 Сплавы медно-цинковые (латуни) литейные. Марки

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические требования

ГОСТ 25192-2012 Бетоны. Классификация и общие технические требования

ГОСТ 25820-2000 Бетоны легкие. Технические условия

ГОСТ 26633-2012 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30515-97 Цементы. Общие технические условия

ГОСТ 31108-2003 Цементы общестроительные. Технические условия

ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия.

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 напрягающий бетон: Бетон, содержащий напрягающий цемент или расширяющую добавку, обеспечивающие расширение бетона в процессе его твердения.

3.2 самонапряжение бетона: Величина предварительного напряжения бетона, создаваемого в результате расширения бетона в условиях упругого ограничения деформаций.

3.3 марка напрягающего бетона по самонапряжению: Среднее значение предварительного напряжения сжатия (самонапряжения) напрягающего бетона, МПа, в возрасте 28 сут, создаваемого в результате его расширения в условиях упругого ограничения деформаций, с жесткостью, соответствующей жесткости стальной арматуры при коэффициенте осевого продольного армирования 0,01 и модуле упругости 2·10 МПа.

3.4 расширяющие добавки РД: Минеральная добавка, применяемая для приготовления напрягающих бетонов.

3.5 напрягающий цемент: Минеральное вяжущее вещество, обеспечивающее при твердении бетонов в условиях упругого ограничения деформаций регулируемое самонапряжение.

3.6 линейное расширение: Увеличение линейных размеров стандартного образца.

4 Классификация

4.1 В соответствии с ГОСТ 25192 устанавливают следующие виды напрягающего бетона:

- тяжелые напрягающие бетоны;

- легкие напрягающие бетоны.

В зависимости от значения контролируемого самонапряжения (см. 5.1.3) напрягающие бетоны подразделяют на следующие виды:

- БН - бетон с нормируемой маркой по самонапряжению, изготовленный на основе напрягающего бетона;

- БК - бетон с компенсированной усадкой, изготовленный на основе портландцемента и расширяющей добавки.

4.2 Условное обозначение бетонных смесей, предназначенных для напрягающих бетонов, принимают по ГОСТ 7473 со следующими дополнениями.

Для бетона с нормируемой маркой по самонапряжению марку по самонапряжению указывают после марки по водонепроницаемости.

Пример условного обозначения бетонной смеси для бетона с нормируемой маркой по самонапряжению Sp1,2, класса прочности на сжатие В40, марки по удобоукладываемости П4, марки по морозостойкости F 300, марки по водонепроницаемости W18:

БСТ БН В40 П4 F 300 W18 Sp1,2 ГОСТ 32803-2014

Допускается для бетона с компенсированной усадкой марку по самонапряжению не указывать.

Пример условного обозначения бетонной смеси для бетона с компенсированной усадкой, класса прочности на сжатие В25, марки по удобоукладываемости П3, марки по морозостойкости F 300, марки по водонепроницаемости W16:

БСТ БК В25 П3 F
300 W16 ГОСТ 32803-2014

5 Технические требования

Напрягающие бетоны изготовляют в соответствии с требованиями настоящего стандарта, проектной и технологической документации, технических условий и разработанными технологическими регламентами, утвержденными в установленном порядке.

5.1 Характеристики

5.1.1 Прочность бетона в проектном возрасте характеризуется классами прочности на сжатие, осевое растяжение и растяжение при изгибе.

Для тяжелых напрягающих бетонов установлены следующие классы:

- по прочности на сжатие: В20; В25; В30; В35; В40; В45; В50; В55; В60; В70; В80; В90;

- по прочности на осевое растяжение: B0,8; 2B1,2; B1,6; B2; B2,4; B2,8; B3,2; B3,6; B4,0;

- по прочности на растяжение при изгибе: B2; B2,4; B2,8; B3,2; B3,6; B4; B4,4; B4,8; B5,2; B6,4; B6,8.

Для легких напрягающих бетонов установлены следующие классы:

- по прочности на сжатие: В10; В12,5; В15; В20; В25; В30; В35; В40;

- по прочности на осевое растяжение: B0,8; B1,6; B2; B2,4; B2,8; B3,2.

Допускается при соответствующем обосновании устанавливать более высокие классы напрягающих бетонов по прочности.

5.1.2 В зависимости от средней плотности устанавливают следующие марки напрягающего бетона:

- легкого: D1200; D1300; D1400; D1500; D1600; D1700; D1800; D1900; D2000;

- тяжелого: D2000, D2100, D2200, D2300, D2400, D2500.

5.1.3 В зависимости от значения самонапряжения устанавливают следующие марки напрягающего бетона: Sp0,6; Sp0,8; Sp1,0; Sp1,2; Sp1,5; Sp2,0; Sp3,0; Sp4,0.

Напрягающие бетоны марок по самонапряжению от Sp0,6 до Sp1,0 относятся к бетонам с компенсированной усадкой, от Sp1,2 до Sp4,0 - к напрягающим бетонам с нормируемым самонапряжением.

5.1.4 В зависимости от условий применения тяжелые напрягающие бетоны должны иметь следующие марки по морозостойкости: F200, F300, F400, F600, F800; легкие: F100, F200, F300, F400, F500.

5.1.5 В зависимости от водонепроницаемости тяжелые напрягающие бетоны должны иметь следующие марки: W12, W14, W16, W18, W20; легкие: W8, W10, W12, W14.

5.2 Требования к материалам

5.2.1 Материалы, применяемые для напрягающих бетонов, должны соответствовать требованиям действующих стандартов и технических условий на эти материалы и обеспечивать получение бетона с заданными характеристиками.

5.2.2 В качестве вяжущего применяют:

- напрягающие цементы по действующим нормативным или техническим документам;

- портландцементы, соответствующие ГОСТ 10178 , ГОСТ 30515 и ГОСТ 31108 , с содержанием СА в клинкере не более 8% в сочетании с добавками по ГОСТ 24211 , регулирующими процесс расширения при условии их оценки по критерию обеспечения требуемой марки по самонапряжению.

5.2.3 В качестве крупного заполнителя для тяжелого напрягающего бетона применяют щебень по ГОСТ 26633 , ГОСТ 8267 , ГОСТ 5578 .

5.2.4 В качестве мелкого заполнителя для тяжелого напрягающего бетона применяют пески по ГОСТ 26633 и ГОСТ 8736 .

5.2.5 В качестве крупных и мелких заполнителей для легкого напрягающего бетона применяют заполнители по ГОСТ 25820 и ГОСТ 32496 .

5.2.6 Добавки для напрягающих бетонов должны соответствовать ГОСТ 24211 и действующим нормативным или техническим документам на конкретные виды расширяющих добавок. Добавки вводят в состав бетонных смесей в количестве от 5% до 30% массы цемента в зависимости от назначения бетона.

5.2.7 Вода для затворения бетонной смеси и приготовления растворов химических добавок должна соответствовать требованиям ГОСТ 23732 .

5.2.8 Удельная эффективная активность естественных радионуклидов сырьевых материалов, применяемых для напрягающих бетонов, не должна превышать предельных значений в зависимости от области применения бетонов по ГОСТ 30108 .

5.3 Требования к бетонным смесям

5.3.1 Бетонные смеси для напрягающих бетонов приготовляют в соответствии с требованиями ГОСТ 7473 .

5.3.2 Состав бетонной смеси подбирают в соответствии с ГОСТ 27006 с учетом требований настоящего стандарта и технологической документации, утвержденной в установленном порядке.

6 Правила приемки

6.1 Приемку напрягающего бетона проводят по всем нормируемым в проектной документации показателям качества в соответствии с ГОСТ 7473 и ГОСТ 13015 .

Оценку бетона по морозостойкости, водонепроницаемости, средней плотности проводят при подборе каждого состава бетонной смеси по ГОСТ 27006 , далее не реже одного раза в 6 мес, а также при изменении состава бетонной смеси или используемых материалов.

6.2 Каждая партия бетонной смеси, предназначенной для напрягающего бетона, должна сопровождаться паспортом по ГОСТ 7473 .

7 Методы контроля

7.1 Прочность напрягающего бетона на сжатие, растяжение при изгибе и осевое растяжение определяют в соответствии с требованиями ГОСТ 10180 , ГОСТ 28570 , ГОСТ 17624 , ГОСТ 22690 , ГОСТ 18105 .

7.2 Среднюю плотность напрягающего бетона определяют по ГОСТ 12730.1 , ГОСТ 10181 .

7.3 Морозостойкость напрягающего бетона определяют по ГОСТ 10060 .

7.4 Водонепроницаемость напрягающего бетона определяют по ГОСТ 12730.5 .

7.5 Определение самонапряжения напрягающего бетона

7.5.1 Сущность метода

Сущность метода заключается в измерении упругой деформации, возникающей в процессе расширения образцов-призм из бетона, отформованных и твердеющих в динамометрических кондукторах, жесткость торцевых пластин которых эквивалентна жесткости продольного армирования, равного 1%.

7.5.2 Средства испытаний

При проведении испытаний должны быть использованы следующие средства измерений:

- индикатор часового типа по ГОСТ 577 ценой деления 0,01 мм и диапазоном измерения 10 мм;

- штангенциркуль по ГОСТ 166 ценой деления 0,05 мм.

Для испытаний применяют следующее оборудование:

- динамометрический кондуктор для образца-призмы размерами 100x100x400 мм или 50x50x200 мм (см. рисунки 1, 2);

- измерительное устройство "краб" с индикатором часового типа ценой деления 0,01 мм для замера выгиба одной пластины кондуктора или штатив с аналогичным индикатором (см. рисунки 3, 4) для замера выгиба обеих пластин;

- эталон для поверки измерительного устройства или стальной эталон - стержень для штатива длиной (200±1) мм, диаметром 16 мм с трехгранными кернами 7 глубиной 0,75 мм по торцам (см. рисунок 3). Материал для изготовления эталонов - сталь 3 (Ст3) по ГОСТ 5781 ;

- металлическая форма для изготовления образцов-призм размерами 100x100x400 мм (см. рисунок 5);

- металлическая форма для изготовления образцов-призм размерами 50x50x200 мм (см. рисунок 6);

- емкость с водой для хранения кондукторов с образцами.

7.5.3 Подготовка к испытанию

Отбор проб бетонной смеси при контроле качества бетона проводят один раз в смену. Проба бетонной смеси при применении кондукторов для образцов-призм размерами 100x100x400 мм должна быть не менее 15 л, для образцов-призм размерами 50x50x200 мм - не менее 2 л.

До сборки кондуктора (см. рисунки 1, 2) с формой проводят затяжку гаек 4 на тягах 3 до упора с выборкой зазора. Не допускается зазор между тягами с пластиной 2 . Нулевой замер кондуктора снимают с помощью измерительного устройства "краб" или штатива, предварительно поверенных с помощью эталона на постоянство отсчета. При поверке штатива эталон необходимо выставлять всегда в одном и том же положении - меткой вверх. Отсчеты снимают с точностью до половины деления индикатора часового типа. Температура кондуктора, измерительного устройства и эталона во время замера должна быть одинаковой.

Перед формованием образца-призмы форма должна быть смазана тонким слоем смазочного материала и собрана с помощью скоб на тягах кондуктора с минимальным зазором для исключения деформаций.

Контроль самонапряжения бетона проводят на бетонном заводе или на строительном объекте у места укладки бетона в конструкцию.

Формование образцов-призм проводят в соответствии с требованиями ГОСТ 10180 . Отформованные в кондукторе образцы-призмы укрывают пленкой или другими водонепроницаемыми материалами для защиты от потерь влаги.

Твердение образцов-призм до достижения прочности бетона 7-15 МПа (примерно сутки) должно происходить в помещении с температурой воздуха (20±2) °С, дальнейшее твердение после снятия формы (до 28 сут) - в воде или в обильно влажных опилках, песке и т.п.

7.5.4 Проведение испытаний

Самонапряжение напрягающего бетона определяют при подборе состава бетонной смеси и контроле качества бетона в целях обеспечения расчетного самонапряжения бетона.

Самонапряжение бетона определяют по трем контрольным образцам-призмам размерами 50x50x200 мм (при использовании щебня фракции не более 10 мм) или 100x100x400 мм, отформованных и твердеющих в специальных динамометрических кондукторах, создающих в процессе расширения бетона упругое ограничение деформаций, эквивалентное продольному армированию образцов-призм, равному 1%.

Измерение кондукторов проводят ежедневно для бетона в возрасте 1-7 сут и далее в возрасте 10, 14 и 28 сут каждый раз с поверкой измерительного устройства с помощью эталона. Результаты измерений заносят в журнал испытаний образцов-призм в кондукторах при определении самонапряжения бетона.

Значение самонапряжения образца-призмы , МПа, определяют по формуле

где - полная деформация образца-призмы;

- длина образца;

- приведенный коэффициент армирования образца, принимаемый равным 0,01;

- модуль упругости стали, принимаемый равным 2·10 МПа.

Самонапряжение бетона вычисляют как среднее арифметическое значение двух наибольших результатов измерения трех образцов-призм в кондукторах, отформованных из одной пробы бетона в возрасте от 1 до 7, 10, 14, 28 сут. Вычисления проводят до двух знаков после запятой.

8 Гарантии производителя (поставщика)

8.1 Производитель (поставщик) бетонной смеси, предназначенной для напрягающего бетона гарантирует:

- на момент поставки потребителю - соответствие всех нормируемых технологических показателей качества бетонных смесей заданным в договоре на поставку;

- в проектном возрасте - достижение всех нормируемых показателей качества бетона, заданных в договоре на поставку, при условии, что потребитель бетонной смеси при изготовлении бетонных и железобетонных конструкций обеспечивает выполнение требований действующих нормативных и технических документов по бетонированию конструкций и соответствие режимов твердения бетона по ГОСТ 10180 .

8.2 Гарантии производителя (поставщика) бетонной смеси должны быть подтверждены:

- протоколами определения качества бетонных смесей при подборе их состава и проведении операционного и приемо-сдаточного контроля;

- протоколами определения нормируемых показателей качества напрягающего бетона в проектном возрасте.

1 - верхняя пластина; 2 - нижняя пластина; 3 - тяга; 4 - гайка; 5 6 - репер с продольным керном; 7 - репер с плоским окончанием; 8 - бетонный образец-призма

Примечание - Материал пластин и гайки - Ст.45 по ГОСТ 5781 , тяги - Ст.3; реперов - латунь Л62 по ГОСТ 17711 . Детали кондуктора хромировать Х36 по ГОСТ 9.306 , хром матовый.

Рисунок 1 - Динамометрический кондуктор для образцов-призм размерами 100x100x400 мм

1 - верхняя пластина; 2 - нижняя пластина; 3 - тяга; 4 - гайка; 5 - репер с трехгранным керном глубиной 0,75 мм; 6 - бетонный образец-призма

Примечание - Материал пластин и гайки - Ст.45; тяги - Ст.3; репера - латунь Л62. Детали кондуктора хромировать Х36 по ГОСТ 9.306 , хром матовый.

Рисунок 2 - Динамометрический кондуктор для образцов-призм размерами 50x50x200 мм

(А) Схема измерения, установка измерительного устройства "краб" на кондуктор

(Б) Эталон с измерительным устройством "краб"

1 - кондуктор размерами 100x100x400 мм; 2 - измерительное устройство "краб"; 3 - эталон; 4 - бетонный образец-призма; 5 - индикатор часового типа; 6 - шпилька с припаянным шариком диаметром 5 мм; 7 - трехгранный керн глубиной 0,75 мм; 8 - продольный керн; 9 - стопорный винт.

Рисунок 3 - Измерительное устройство "краб" с индикатором часового типа для определения самонапряжения образцов-призм размерами 100x100x400 мм

1 - основание штатива; 2 - шпилька с шариком; 3 - кондуктор с бетонной призмой; 4 - винт крепления индикаторов; 5 - индикатор; 6 - стойка; 7 - винт крепления консоли; 8 - консоль; 9 - гайка

Рисунок 4 - Штатив с индикатором часового типа для определения самонапряжения образцов-призм

1 - дно формы; 2 - борт формы со скобами; 3 - шайба 12.03.01 ГОСТ 6958 ; 4 - болт M12-6gX30.56.05 ГОСТ 7798

Рисунок 5 - Металлическая форма для изготовления образцов-призм размерами 100x100x400 мм

1 - дно формы; 2 - борт формы со скобами; 3 - шайба 8.03.05 ГОСТ 11371 ; 4 - болт M8-6gX40.56.05 ГОСТ 7798

Рисунок 6 - Металлическая форма для изготовления образцов-призм размерами 50x50x200 мм


УДК 691.328 МКС 91.100.30

Ключевые слова: напрягающие бетоны, бетоны с компенсированной усадкой, напрягающий цемент, расширяющие добавки, самонапряжение, свободное расширение, водонепроницаемость, трещиностойкость, долговечность
__________________________________________________________________________



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2015

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции - железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части, или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2 – 3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

Преимущества технологии преднапряжения железобетона

Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно, или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

Построенная в 1995 г. в Норвегии платформа "Тролл" имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

Мост "Нормандия"

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост "Баррнос де Луна" в Испании имеет пролет 440, "Анасис" в Канаде - 465, мост в Гонконге - 475 м. Арочный мост в Южной Африке имеет наибольший пролет - 272 м. Мировой рекорд для вантовых мостов принадлежит мосту "Нормандия", где пролет 864 м. Ненамного уступает ему мост "Васко де Гама" в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции - пилоны и пролетные строения - выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Технология преднапряжения монолитного железобетона в России

В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах "Спайрол", "Спэнкрит", "Спандек", "Макс Рот", "Партек" и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит "Спэнкрит" применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии "Макс Рот" появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии "Партек" (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.