Расчет коэффициента вариации в Microsoft Excel. Пример нахождения коэффициента корреляции

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

В математических описаниях часто фигурирует термин «числовой коэффициент», например, в работе с буквенными выражениями и выражениями с переменными. Материал статьи ниже раскрывает понятие этого термина, в том числе, на примере решения задач на нахождение числового коэффициента.

Yandex.RTB R-A-339285-1

Определение числового коэффициента. Примеры

Учебник Н.Я. Виленкина (учебный материал для учащихся 6 классов) задает такое определение числового коэффициента выражения:

Определение 1

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

Числовой коэффициент зачастую называют просто коэффициентом.

Данное определение дает возможность указать примеры числовых коэффициентов выражений.

Пример 1

Рассмотрим произведение числа 5 и буквы a , которое будет иметь следующий вид: 5 · a . Число 5 является числовым коэффициентом выражения согласно определению выше.

Еще пример:

Пример 2

В заданном произведении x · y · 1 , 3 · x · x · z десятичная дробь 1 , 3 – единственным числовой множитель, который и будет служить числовым коэффициентом выражения.

Также разберем такое выражение:

Пример 3

7 · x + y . Число 7 в данном случае не служит числовым коэффициентом выражения, поскольку заданное выражение не является произведением. Но при этом число 7 – числовой коэффициент первого слагаемого в заданном выражении.

Пример 4

Пусть дано произведение 2 · a · 6 · b · 9 · c .

Мы видим, что запись выражения содержит три числа, и, чтобы найти числовой коэффициент исходного выражения, его следует переписать в виде выражения с единственным числовым множителем. Собственно, это и является процессом нахождения числового коэффициента.

Отметим, что произведения одинаковых букв могут быть представлены как степени с натуральным показателем, поэтому определение числового коэффициента верно и для выражений со степенями.

К примеру:

Пример 5

Выражение 3 · x 3 · y · z 2 – по сути оптимизированная версия выражения 3 · x · x · x · y · z · z , где коэффициент выражения – число 3 .

Отдельно поговорим о числовых коэффициентах 1 и - 1 . Они очень редко записаны в явном виде, и в этом их особенность. Когда произведение состоит из нескольких букв (без явного числового множителя), и перед ним обозначен знак плюс или вовсе нет никакого знака, мы можем говорить, что числовым коэффициентом такого выражения является число 1 . Когда перед произведением букв обозначен знак минус, можно утверждать, что в этом случае числовой коэффициент – число - 1 .

Пример 6

К примеру, в произведении - 5 · x + 1 число - 5 будет служить числовым коэффициентом.

По аналогии, в выражении 8 · 1 + 1 x · x число 8 – коэффициент выражения; а в выражении π + 1 4 · sin x + π 6 · cos - π 3 + 2 · x числовой коэффициент - π + 1 4 .

Нахождение числового коэффициента выражения

Выше мы говорили о том, что если выражение представляет собой произведение с единственным числовым множителем, то этот множитель и будет являться числовым коэффициентом выражения. В случае, когда выражение записано в ином виде, предстоит совершить ряд тождественных преобразований, который приведет заданное выражение к виду произведения с единственным числовым множителем.

Пример 7

Задано выражение − 3 · x · (− 6) . Необходимо определить его числовой коэффициент.

Решение

Осуществим тождественное преобразование, а именно произведем группировку множителей, являющихся числами, и перемножим их. Тогда получим: − 3 · x · (− 6) = ((− 3) · (− 6)) · x = 18 · x .

В полученном выражении мы видим явный числовой коэффициент, равный 18 .

Ответ: 18

Пример 8

Задано выражение a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 . Необходимо определить его числовой коэффициент.

Решение

С целью определения числового коэффициента преобразуем в многочлен заданное целое выражение. Раскроем скобки и приведем подобные слагаемые, получим:

a - 1 2 · 2 · a - 6 - 2 · a 2 - 3 · a - 3 = = 2 · a 2 - 6 · a - a + 3 - 2 · a 2 + 6 · a - 3 = - a

Числовым коэффициентом полученного выражения будет являться число - 1 .

Ответ: - 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


В математических описаниях используется термин «числовой коэффициент », в частности, при работе с буквенными выражениями и выражениями с переменными удобно использовать понятие числового коэффициента выражения. В этой статье мы дадим определение числового коэффициента выражения и разберем примеры его нахождения.

Навигация по странице.

Определение числового коэффициента, примеры

В учебнике Н. Я. Виленкина математика для 6 классов дается следующее определение числового коэффициента выражения .

Определение.

Если буквенное выражение является произведением одной или нескольких букв и одного числа, то это число называется числовым коэффициентом выражения .

К слову, числовой коэффициент часто называют просто коэффициентом.

Озвученное определение позволяет привести примеры числовых коэффициентов выражений . Для начала рассмотрим произведение числа 3 и буквы a вида 3·a . Число 3 - это числовой коэффициент этого выражения по определению. Другой пример: в произведении x·y·0,2·x·x·z единственным числовым множителем является 0,2 , она и является числовым коэффициентом этого выражения.

А теперь приведем контр пример. Число 3 не является числовым коэффициентом выражения 3·x+y , так как исходное выражение не является произведением. Зато это число 3 является числовым коэффициентом первого из слагаемых в исходном выражении.

А в произведении 5·a·2·b·3·c содержится не одно, а три числа. Для определения числового коэффициента этого выражения, его нужно преобразовать в произведение, содержащее единственный числовой множитель. Как это делается, мы разберемся в следующем пункте этой статьи, в этом заключается процесс .

Стоит отметить, что произведения одинаковых букв могут быть записаны в виде , поэтому определение числового коэффициента подходит и для выражений со степенями. Например, выражение 5·x 3 ·y·z 2 по сути является выражением вида 5·x·x·x·y·z·z , его коэффициентом по определению является число 5 .

Также нужно остановиться на числовых коэффициентах 1 и −1 . Их особенность заключается в том, что они почти никогда не записываются в явном виде. Если выражение представляет собой произведение нескольких букв (без числового множителя) и передним стоит знак плюс, или нет никакого знака, то числовым коэффициентом такого выражения считается число 1 . Если перед произведением нескольких букв стоит знак минус, то коэффициентом такого выражения считается число −1 . Например, числовой коэффициент выражения a·b равен единице (так как a·b можно записать как 1·a·b ), а числовой коэффициент выражения −x равен минус единице (так как −x тождественно равен выражению (−1)·x ).

В дальнейшем определение числового коэффициента расширяется с произведения числа и нескольких букв на произведение одного числа и нескольких буквенных выражений. Так, например, в произведении число −5 можно считать числовым коэффициентом. Аналогично, число 3 есть коэффициент выражения 3·(1+1/x)·x , а - коэффициент выражения .

Нахождение числового коэффициента выражения

Когда выражение представляет собой произведение с одним числовым множителем, этот множитель и является числовым коэффициентом. Когда выражение имеет другой вид, то нахождение его числового коэффициента подразумевает предварительное выполнение некоторых тождественных преобразований , с помощью которых исходное выражение приводится к произведению с одним числовым множителем.

Пример.

Найдите числовой коэффициент выражения −4·x·(−2) .

Решение.

Сгруппируем множители , являющиеся числами, после чего выполним их умножение: −4·x·(−2)=((−4)·(−2))·x=8·x . Теперь отчетливо виден искомый коэффициент, он равен 8 .

Всем привет!

Вступив в сообщество ставок на спорт, не нашел никаких статей по теории ставок, хотя сам ставил и знаю, что теоретического материала в беттинге не меньше, чем в покере. Поэтому хочу разместить здесь несколько постов о математических и аналитических основах ставок на спорт. Надеюсь, кому-нибудь пригодится.

Начать хотелось бы с того, чего начинает каждый игрок: с линии букмекера. Первый вопрос, который возник у меня, когда я впервые взял в руки распечатанную линию: Как букмекер определяет всю эту массу коэффициентов?

Букмекерские конторы работают исключительно с целью извлечения прибыли. И, вопреки широко распространенному мнению, прибыль букмекера зависит не от количества проигранных ставок, а от правильно выставленных коэффициентов. Что значит "правильно"? Это значит, что при любом, даже самом неожиданном исходе события, букмекер должен остаться с прибылью.

Рассмотрим, как формируются коэффициенты. Сначала аналитики определяют шансы команд. Делается это многими способами, которые можно поделить на две группы: аналитические и эвристические. Аналитические - это в основном статистика и математика (теория вероятностей), эвристические - это экспертные оценки. Тем или иным образом комбинируя полученные результаты, выводятся вероятности исходов события. Допустим, в результате деятельности аналитиков и экспертов получены следующие вероятности исходов:

Это "чистые шансы", но эти коэффициенты никогда не будут в линии, потому что букмекер в этом случае не получит прибыли. В линии коэффициенты на эти события будут выглядеть примерно так:

То есть из каждой поставленной всеми игроками в сумме сто тысяч рублей, 75 000 было поставлено на победу 1, 15 000 на ничью и 10 000 - на победу 2. Большинство игроков чаще всего ставит на заведомых фаворитов, составляя на основе таких исходов большую часть экпрессов. Что же получит букмекер с каждой вложенной игроками сотни тысяч долларов в случае различных исходов?

Видно, что в случае победы фаворита, которая случается чаще всего, букмекер понесет убытки. Это совершенно недопустимо для бизнеса, и букмекер обязан исключить даже теоретическую возможность возникновения подобной ситуации.

Для этого он должен искусственно занизить коэффициент на фаворита. Букмекер заранее не знает, как в точности распределятся ставки, но знает наверняка, что игроки будут "грузить" на фаворита, поэтому для страховки завышает вероятность победы фаворита.

В реальности ни реальные шансы, ни распределение средств игроками точно рассчитать невозможно, всегда существует некоторая погрешность. Поэтому букмекеры стараются изначально занизить коэффициенты на фаворита, чтобы гарантировать себе прибыль, т.е. определяют шансы команд и добавляют к рассчитанной вероятности победы фаворита 10-20%. А по мере поступления ставок, в зависимости от их реального текущего распределения, варьируют коэффициентами, чтобы прибыль была наибольшей.

Вывод: основной принцип, которым руководствуется букмекер - распределение финансов между двумя или более группами игроков таким образом, чтобы выплачивать выигрыши за счет средств проигравших, оставляя определенный процент себе. Очень часто полученные таким образом коэффициенты не имеют ничего общего с вероятностями тех или иных событий. Поэтому нужно иметь собственную систему оценки спортивных событий.

Спасибо за внимание!