Микроэлементы, необходимые для развития растений. Макро, микроэлементы в питании растений

Растению для нормального развития необходимы минеральные элементы, как макроэлементы, так и микроэлементы. Очень важная роль микроэлементов в жизни растений . Не смотря на то, что они необходимы растению в очень малых ко­личествах, но они влияют на:

  • физико-химическое состояние коллоидов протоплаз­мы,
  • на обмен и белков, (подробнее: ),
  • способствуют синтезу хлорофилла,
  • входят в состав некоторых и активизируют их.
Минеральные элементы для растений

Действие микроэлементов на развитие растений

Микроэлементы могут образовывать в растениях органоминеральные комплексы, имеющие большое значение в жизни расте­ний.

Железо

Еще Вильгельм Кноп (1817-1891), немецкий агрохимик, отмечал, что в отсутствие же­леза получаются хлоротические, лишенные зеленой окраски растения. Вначале думали, что железо входит в состав хлоро­филла, но исследованиями Р. Вильштеттера (1872-1942), немецкого химика-органика, было установлено, что в состав хлорофилла входит не железо, а магний. Тем не менее железо абсолютно необходимо для образования хлоро­филла, так как синтез его катализируется ферментами, содер­жащими железо.

Роль железа не ограничивается его участием в образовании хлорофилла - оно необходимо также и бесхлорофильным ор­ганизмам. Позднейшие исследования показали, что железо вхо­дит в состав окислительно-восстановительных ферментов и играет очень большую роль в и .

Без железа отмирает точка роста стебля, опадают бутоны, уменьшаются междоузлия, разрушаются хлоропласты и отми­рают живые клетки.

Обычно в почву железо не вносят: его в ней достаточно в усвояемой форме.

На сильно известковых почвах со щелочной реакцией может не быть доступного для растения железа. В этом случае растения заболевают хлорозом: сначала бледнеют самые молодые листья, затем полностью теряют окраску, постепенно болезнь распространяется и на нижележащие листья, причем самые нижние сохраняют зеленую окраску.

По­теря зеленой окраски начинается у основания листа, т. е. в рас­тущей зоне, и постепенно распространяется к его верхушке. Если в начальной стадии развития хлороза дать растению железо в доступной форме, то зеленая окраска восстанавливается также начиная с основания листа, а по растению - с молодых листьев к старым.

При прогрессирующем хлорозе, на листьях появляются пятна, а затем побуревшие участки, указывающие на полное отмирание клеток. Железо не передвигается из ниж­них зеленых листьев в верхние.

Явление хлороза можно наблюдать у виноградной лозы, цитрусовых, хмеля и других растений.


Это заболевание расте­ний приносит ущерб . Для внесения железа в почву рекомендуется применение хелатов железа - комплексных соединений органических анионов и ряда металлов, поскольку соли железа, внесенные в почву со щелоч­ной реакцией в результате взаимодействия с другими элемен­тами становятся недоступными растению.

Хелаты железа обладают высокой устойчивостью, легко поступают в растения через корни и даже листья и полностью обеспечивают потребность растений в железе, так как органическая часть молекулы хелата распадается, а железо используется растением.

Бор

Из всех микроэлементов наиболее полно изучен бор . Многие растения (лен, гречиха, табак, свекла и др.) вообще не могут расти без бора, но бор необходим и всем другим рас­тениям: его отсутствие вызывает ряд нарушений в росте и раз­витии растений, потерю иммунитета к вредителям и болез­ням.

Двудольные растения выносят из почвы до 350 г. бора, однодольные - 8-20 г. с 1 га. У многих злаковых растений в отсутствие бора получается стерильный колос.

Без бора у растений нарушается нормальная жизнедеятель­ность меристематических тканей, недоразвивается проводящая система растений, отмирают точки роста стебля и задерживается рост корней. У бобовых растений резко уменьшается количество клубеньков.

Бор влияет на проницаемость протоплазмы, перемещение углеводов и в связи с этим на цветение растений, ускоряя его наступление. При недостатке бора уменьшается интенсивность цветения и завязывания плодов, задерживается рост репродук­тивных органов, а при сильном борном голодании они отмирают. Бор не подвергается реутилизации, поэтому борные удобрения рекомендуется вносить в почву в различные моменты вегетации растений.

При недостатке бора многие растения заболевают. Так, у са­харной свеклы отмирают точки роста и разрушаются ткани листьев и корнеплода (сухая гниль сердечка), у брюквы и турнепса бу­реет и ссыхается сердцевина.


Недостаток микроэлементов у сахарной свеклы

Бактериоз льна также вызывается отсутствием или недостатком бора.

Марганец

Марганец активирует некоторые ферменты. Отсутствие мар­ганца вызывает угнетение , уменьшается содержа­ние хлорофилла в клетках растений.

При недостатке марганца у злаков развивается серая пятнистость, появляется поперечная линия с ослабленным тургором, поэтому пластинка листа перегибается и свешивается вниз.


Недостаток марганца у злаков

У гороха появляется болотная пятнистость - на семенах образуются коричневые или черные пятна, у свеклы - пятни­стая желтуха, приводящая к закручиванию листьев. У многих плодовых деревьев при недостатке марганца обнаруживается хлороз.

Цинк

Недостаток цинка у растений вызывает различные за­болевания, что особенно резко проявляется у плодовых, цитру­совых и тунговых деревьев. Отсутствие цинка приводит к ослаб­лению роста, мелколистности укорочению междоузлий, вызы­вая тем самым розеточность растений. При этом появляется хлоротическая пятнистость и бронзовая окраска листьев.


Недостаток цинка у цитрусовых

Цинк способствует синтезу ростовых веществ и участвует в построе­нии ряда ферментных систем, входит в фермент карбоангидразу, который ускоряет распад Н 2 СО 3 до воды и углекислого газа.

Медь

Медь необходима всем растениям. Она участвует в окислительных системах: входит в состав многих окислитель­ных ферментов, где прочно связана с белком. Содержится медь в хлоропластах растений; в золе хлоропластов сахарной свеклы ее количество достигает 64% от общего содержания меди в зо­ле листа.

Такое распределение меди указывает на большую роль ее в активности ферментов хлоропластов. Медь придает устойчивость хлорофиллу против разрушения и положительно влияет на водоудерживающую способность тканей. При доста­точном снабжении растений медью повышается их морозоустой­чивость.

При недостатке меди на торфянистых почвах наиболее стра­дают злаки (овес, ячмень и пшеница) и свекла. При этом подсыхают и скручиваются кончики листьев и часто не образуются зерна. У плодовых иногда отмирает верхушка дерева (суховершинность).


Суховершинность плодовых деревьев при недостатке меди

Применение медных удобрений на торфяных почвах дает возможность выращивать нормальные растения.

Молибден


Молибден необходим для бобовых культур

Кроме того, молибден принимает участие в восстановлении нитратов, так как входит в состав фермента нитратредуктазы.

Другие элементы

Растениям также не­обходимы кобальт, мышьяк, йод, никель, фтор, алюминий и др.

Они не встраиваются в структуру тканей растений, иными словами, не создают «тело» и «массу».

Входящие в состав многих ферментов и витаминов, эти элементы выполняют функции биологических ускорителей и регуляторов сложных биохимических процессов. При их дефиците или избытке в почве у овощей, плодовых деревьев, кустарников и цветов нарушается обмен веществ, возникают различные заболевания. Поэтому роль микроэлементов нельзя недооценивать.

Признаки минерального голодания

Семеро важных

Железо регулирует дыхание растений. Его недостаток приводит к нарушению фотосинтеза и, как следствие, к хлорозу (потеря зеленой окраски и побеление) молодых верхушечных листьев. Иногда страдают и побеги - они покрываются бурыми пятнами.

Марганец также участвует в образовании хлорофилла, и его дефицит тоже проявляется в виде хлороза. Однако картина здесь несколько иная: пластинки листа желтеют, но жилки остаются зелеными - возникает пятнистость листьев, приводящая к отмиранию участков ткани.

Бор способствует процессу роста. При его недостатке гибнет верхушечная почка (точка роста). Возможно пожелтение листьев, жилки делаются коричневыми или желтыми. Источники соединений бора - зола или навоз.

Молибден играет важную роль в азотном обмене и непосредственно влияет на урожайность. У растений, испытывающих его дефицит, на листьях появляются светлые пятна, возможно отмирание почек, плоды и клубни растрескиваются. Источник соединений молибдена – молибденовокислый аммоний.

Цинк регулирует клеточный обмен. Его нехватка проявляется в сильно выраженной крапчатости старых листьев, появлении на них уголков отмершей ткани, мелколиственности. Характерный признак дефицита цинка - розеточность плодовых: у молодых побегов яблони очень короткие междоузлия, а листья на конце побега собраны в розетку.

Медь активизирует образование белков и витаминов группы В. Этого элемента очень мало в песчаных и торфянистых почвах. Его недостаток проявляется в устойчивом увядании верхних листьев, даже при хорошем обеспечении влагой, вплоть до их опадания.

Сера участвует в образовании витаминов, аминокислот и белков. Ее дефицит выявить трудно, так как внешне он никак не выражен. К счастью, и возникает довольно редко. Источник серы - сернистые соединения других минеральных элементов (сульфат калия, сульфат аммония, сульфат магния).

Как не мешать друг другу

Казалось бы, самый простой способ, позволяющий обеспечить достаточное содержание микроэлементов в почве, - внесение в нее соответствующих солей-удобрений. Но почва - очень сложная система, в которой взаимодействуют все минеральные элементы, и это необходимо учитывать.

Растения могут усвоить любой элемент, если он находится в растворимом состоянии (почвенный раствор) и доступен корням. А элементы, в свою очередь, могут переходить из растворимого состояния в нерастворимое - и наоборот, это зависит от показателя кислотности почвы (рН) и их взаимовлияния.

Так, при уровне рН более 5,5 (кислые и слабокислые почвы) медь, цинк, марганец, железо доступны для усвоения, а молибден - нет. При рН, равном 7 и более (нейтральная или щелочная реакция почвы), медь, молибден, железо, цинк, марганец делаются «малоподвижными» и не переходят в усвояемые растворы.

На окультуренных почвах необходимо учитывать и «фосфорный фактор»: внесенные в почву фосфорные удобрения (суперфосфаты) способствуют образованию нерастворимых соединений железа, цинка и меди, отчего усвоение этих элементов затрудняется.

Садовнику-непрофессионалу нелегко усвоить все эти биохимические тонкости, еще более сложно - учитывать их и контролировать. Поэтому лучше использовать так называемые хелатные (органические) соединения микроэлементов (вместо их солей).

Хелаты имеют очень устойчивую структуру. При изменении почвенных условий микроэлементы, находящиеся в их составе, на это не реагируют и их взаимодействие исключается. При выборе удобрения вы должны решить, что будете применять - комплексное полное или только набор микроэлементов. Однако в обоих случаях необходимо убедиться в том, что элементы питания присутствуют в виде хелатных соединений.

И еще раз...

Некоторые элементы минерального питания растения способны использовать многократно. Этот процесс, который называется реутилизацией , распространяется в первую очередь на макроэлементы - азот, фосфор, калий и магний . При недостаточном содержании этих веществ в почве растение жертвует старыми листьями - и извлекает эти элементы уже из них. Поэтому внесезонное пожелтение и опадание старых листьев - показатель элементного голодания.

Реутилизации поддаются не все элементы. Сера, например, - лишь частично, а кальций, железо, марганец, бор, медь и цинк вообще не могут использоваться многократно.
Способности растений к количественному потреблению элементов минерального питания и их «предпочтения» также существенно различаются. Некоторые из них проявляют самую настоящую избирательность и имеют репутацию растений-концентраторов.

Накопление элементов растениями

  • кальций - бобовые, подсолнечник, капуста, картофель, гречиха
  • калий - бобовые, картофель, томаты, подсолнечник, свекла, капуста, огурцы
  • кремний и фосфор – злаки
  • сера - бобовые, лук, чеснок
  • марганец - фрукты, брусника, черника, голубика, свекла
  • цинк - свекла, кукуруза и табака

Зная, какой элемент будет в первую очередь извлечен тем или иным растением из почвы, можно примерно рассчитать баланс питания каждого из них.

Внесение микроэлементов

Обычно микроэлементы в виде солей рекомендуют не вносить в почву, а использовать для внекорневой подкормки. То есть опрыскивать их раствором листья растений. Это связано с тем, что эффективность подобных корневых подкормок не слишком велика - во многом она зависит от конкретных почвенных условий: состава, кислотности, температур и т.д. При внекорневой же подкормке удобрения усваиваются почти мгновенно, особенно если раствор попадает на внутреннюю сторону листьев. Правда, здесь также существуют ограничения:
растения более активно поглощают «пищу» своими листовыми устьицами в утренние (с 6.00 до 8.00) и в вечерние (с 18.00 до 20.00) часы] в остальное время удобрять их нецелесообразно.

Впрочем, все это относится исключительно к микроэлементам в виде солей. Хелатные соединения усваиваются растениями независимо от кислотности почвы, поэтому могут быть использованы и для корневой, и для внекорневой подкормки.

Восполнение слабо доступных для растений микроэлементов средствами листовой подкормки при помощи удобрения содержащего оптимальный набор микроэлементов в физиологически сбалансированном соотношении, являлся основополагающей задачей при разработке удобрения нового поколения - «Аквадон-Микро», которое позволяет обогатить растения микроэлементами при минимальных экономических затратах и повысить урожайность сельскохозяйственных культур.

Бор (B) один из наиболее важных микроэлементов для растений. В клетке большая его часть представлена комплексными соединениями с полисахаридами клеточной стенки. Без бора, прежде всего, нарушаются процессы формирования репродуктивных органов, созревания семян и плодоношения. Исключительно важную функцию выполняет бор в углеводном обмене. Бор способствует лучшему использованию кальция в процессах обмена веществ в растениях. В этой связи применение «Аквадон-Микро» способствует не только увеличению урожайности, но и значительному повышению качества продукции.

Железо (Fe) участвует в функционировании основных элементов электрон-транспортных цепей дыхания и фотосинтеза, в восстановлении молекулярного азота и нитрата до аммиака, катализирует начальные этапы синтеза хлорофилла. Недостаток железа часто имеет место при переувлажнении на карбонатных, а также на плохо дренированных почвах, проявляется в пожелтении листьев (хлороз) и снижении интенсивности окислительно-восстановительных процессов.

Кобальт (Co) необходим высшим растениям для фиксации молекулярного азота бактероидами и концентрируется в клубеньках. Необходим для синтеза витамина В12. Является мощным стимулятором роста.

Магний (Mg) участвует в белковом и углеводном обмене, входит в состав хлорофилла, который при его недостатке разрушается, предотвращает хлороз. Происходит отток хлорофилла по жилкам из старых листьев к молодым. Недостаток магния проявляется в пожелтении участков листа между жилками и в снижении урожайности. Остро востребован культурами с большим выносом калия (сахарная свекла, виноград и др.)

Марганец (Mn) активизирует ферменты в растении, накапливается в листьях и участвует в фотолизе воды, являясь компонентом фотосистемы, способствует накоплению и передвижению сахаров из листьев в корнеплоды, стимулирует нарастание новых тканей в точках роста, улучшает поглощение железа из почвы и предупреждает хлороз. При его недостатке резко снижается выделение кислорода при фотосинтезе и содержание углеводов, особенно в корнях. Чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня. Поступление марганца в растения снижается при низкой температуре и высокой влажности почвы, что чаще всего наблюдается ранней весной, и от этого в значительной степени страдают озимые.

Медь (Cu) входит в состав ферментов и участвует в окислительно-восстановительных превращениях, около 50% ее содержится в хлоропластах. При дефиците меди нарушается лигнификация клеточных стенок, снижается интенсивность дыхания и фотосинтеза. Признаки медного голодания проявляются чаще всего на
торфянистых и на кислых песчаных почвах. Симптомы заболевания для зерновых культур выражаются в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошение не происходит, и весь стебель постепенно засыхает.
Растения отзывчивые к меди: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна, белокочанная капуста, картофель.
Медь повышает устойчивость растений против грибковых и бактериальных заболеваний, снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости. Плодовые культуры при недостатке меди заболевают, так называемой, суховершинностью или экзантемой.
Медь в растениях повышает содержание гидрофильных коллоидов, и, поэтому, в сухое и жаркое лето внекорневые подкормки этим элементом очень эффективны.

Молибден (Mo) часто называют микроэлементом азотного обмена, поскольку он входит в состав нитратредуктазы и нитрогеназы. При его недостатке, что часто бывает на кислых почвах, в тканях накапливается большое количество нитратов и нарушается нормальный обмен веществ у растений. Задерживается рост растений, тормозится синтез хлорофилла.

Сера (S). При недостатке серы наблюдается слабый рост растений и преждевременное пожелтение листьев. Больше всех других серу содержат и нуждаются в ней растения семейства крестоцветных, а также бобовые и картофель. При недостатке серы у плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании листья растений не опадают, хотя имеют бледную окраску. Недостаток ее отмечается на разных почвах, особенно на дерново-подзолистых, легких, малогумусных, а также в районах с большим количеством осадков, удаленных от промышленных центров.

Цинк (Zn) входит в состав многих ферментов, участвует в образовании хлорофилла, способствует ситнезу витаминов, поэтому подкормка цинком усиливает рост растений. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительных организмах. При его дефиците нарушается фосфорный обмен: возрастает содержание неорганического фосфата, замедляется его превращение в органические формы, что проявляется на растениях в хлоротичных пятнах на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. Применение «Аквадон-Микро» с содержанием цинка повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур.

Для успешного культивирования сельскохозяйственных растений очень важна роль сбалансированности минерального питания. Избыток или недостаток какого либо элемента приводит к нарушению поступления других, что вызывает задержку ростовых процессов и снижает урожайность. Так, некоторые макроудобрения, внесенные в больших дозах, влияют на доступность для растений микроэлементов: фосфорные – цинка и меди, азотные – меди и молибдена, калийные – бора и магния. В то же время недостаток в почве микроэлементов снижает эффективность удобрений с макроэлементами.

Общие представления о минеральном питании.

Растения питаются простыми веществами не только из воздуха (углекислота и вода – фотосинтез), но и из почвы (ионы минеральных солей – минеральное питание). Они усваивают простые неорганические соединения из внешней природы, синтезируют из них сложные органические вещества и строят свое тело.

Органические вещества растений состоят из органогенных элементов: углерода – 45%, кислорода – 42%, водорода – 6,5% и азота – 2,5% - всего 95%. Углерод, водород, кислород усваиваются растениями в результате воздушного питания. В растениях есть также 5-10% зольных минеральных элементов – они остаются после сжигания растений.

Процесс усвоения зольных элементов и азота из почвы называется почвенным или минеральным питанием растений. Снабжение растений полным набором в оптимальном соотношении минеральных элементов имеет значение для обмена растений, нормального развития, преодоления неблагоприятных воздействий окружающей среды. В сельском хозяйстве давно научились регулировать минеральное питание растений с помощью агроприемов и внесения минеральных удобрений.

Макро- и микроэлементы, необходимые для растений, и их физиологическая роль.

Анализ обнаруживает в растениях почти все элементы периодической системы Менделеева. Главные из них – микро- и макроэлементы.

макроэлементы

микроэлементы

1.Макроэлементы.

Азот.

Входит в состав белков, нуклеиновых кислот, АТФ, АДФ, коферментов, хлорофиллов, цитохромов, некоторых липидов, многих витаминов, гормонов роста растений. Азот является составной частью важнейших для жизни веществ. Он непосредственно влияет на рост растений.

Фосфор.

Входит в состав ДНК, РНК, АТФ, коферментов, фосфолипидов, сахарофосфатов, белков, многих других промежуточных продуктов метаболизма. Фосфорсодержащие вещества занимают центральное место в конструктивном и энергетическом обмене. Важна роль фосфора в фотосинтезе и дыхании. Кроме того энергия при фотосинтетическом и окислительном фосфорилировании запасается в макроэргических фосфатных связях АТФ. Фосфор важен для цветения и плодоношения растений.

Калий.

Не входит в состав органического вещества, регулирует состояние цитоплазмы клеток растений, повышая ее проницаемость и уменьшая вязкость, находится в клеточном соке, принимает активное участие в осмотических явлениях клеток, движении устьиц, усиливает биосинтез крахмала, ускоряет процессы фотосинтетического фосфорилирования, отток ассимилятов. Основная роль калия – регуляторная – принимает участие в процессах обмена веществ в растении.


Сера.

Содержится во всех белках, входит в состав аминокислот (метионина, цистеина, цистина), содержится в витаминах (тиамин, биотин), липоевой кислоте, сульфолипидах, коферменте А, чесночных и горчичных маслах. Дисульфидные группы участвуют в образовании третичной структуры белков, а сульфгидрильные - в образовании ферментов с участием НАД и ФАД. Сера играет важную роль в белковом и липидном обменах, в энергетике растений, важна для поддержания структуры мембран тилакоидов хлоропластов.

Кальций.

Содержится в растениях в органических веществах и в ионной форме, входит в состав клеточной стенки растений, в состав хромосом, мембран, стабилизируя их структуру. В свободном виде выступает в качестве антагониста калия – повышает вязкость и снижает проницаемость цитоплазмы, нейтрализует избыток органических кислот в клетках, поддерживает жизнедеятельность меристем.

Магний.

Находится в составе молекулы хлорофилла и хелатов, играет роль в стабилизации структуры рибосом, регулирует состояние цитоплазмы, повышая вязкость и понижая проницаемость цитоплазмы, является кофактором многих ферментов.

Натрий.

Для некоторых групп растений (галофитов) засоленных мест обитания имеет важное значение. Для большинства растений не нужен.

Кремний.

В больших количествах содержится в листьях некоторых древесных пород (в хвое ели), входит в состав клеточных стенок древесины, панциря диатомовых водорослей. Многие растения обходятся без него.

2.Микроэлементы .

Железо.

Содержится в количестве 0,08%. В качестве кофактора входит в состав ферментов, участвующих в синтезе хлорофилла, входит в состав оксиредуктаз, в ферментный комплекс нитрогеназы, то есть участвует в азотфиксации, содержится в молекулах цитохромов, ферредоксина, участвует в процессе переноса электронов.

Медь.

Встречается в составе ферментов, участвующих в биосинтезе хлорофилла, входит в состав ферментов оксидаз, участвующих в дыхании, в состав белка пластоцианина, активирует нитроредуктазу, то есть участвует в азотном обмене. Недостаток меди вызывает задержку роста и цветения.

Цинк.

Играет важную роль в белковом обмене, входя в состав пептидогидролаз, принимает участие в синтезе индолилуксукной кислоты (гормон растений), влияет на синтез аминокислоты триптофана, активирует ряд ферментов гликолиза и реакции ПФП.

Имеет широкий спектр действия. Влияет на деление клеток, способствуя росту корневых и надземных частей растений, участвует в прорастании пыльцы и росте завязи, способствует оттоку углеводов из хлоропластов, повышает эластичность клеточной стенки и засухоустойчивость растений.

Марганец.

В качестве кофактора некоторых ферментов катализирует реакции фотосинтеза и дыхания, участвует в процессе восстановления нитратов, обмене железа, поддерживает структуру мембран тилакоидов, активирует ферменты цикла Кребса, участвует в синтезе м-РНК в ядре.

Молибден.

Играет важную роль в азотном обмене, участвует в процессе азотфиксации, в реакциях биосинтеза белка, аскорбиновой кислоты, способствует лучшему усвоению кальция, росту корневых систем растений. При недостатке молибдена, рост растений тормозится.

Кроме перечисленных микроэлементов важную роль играют в метаболизме растений селен, иод, ванадий, титан, никель.

Просмотры: 2273

13.02.2019

По оценкам разных исследователей, для питания растений необходимо от 68 до 84 элементов периодической системы Д. И. Менделеева. Роль далеко не всех их изучена досконально. Тем не менее, общепризнано, что определенная часть найденных в растениях и почве элементов является совершенно необходимой для нормального роста и развития растений, получения хороших урожаев.

Все элементы, участвующие в , принято классифицировать в зависимости от их содержания в растениях и в почве. Обычно их разделяют на макроэлементы и микроэлементы. По этой классификации, элементы, содержание которых в перерасчете на сухое вещество составляет от сотых долей процента до нескольких десятков процентов, являются макроэлементами. Те элементы, содержание не превышает тысячных долей процента, относят к микроэлементам.

В настоящее время эта классификация дополнена. Часть элементов сейчас относят к мезоэлементам, т.е., по сути, они образуют группу, промежуточную между макро- и микроэлементами. Кроме того, иногда выделяют ультрамикроэлементы. Это те элементы, содержание которых в растениях ничтожно мало, а физиологическая роль и влияние практически не изучены.


Если придерживаться уточненной классификации, то к макроэлементам относятся азот, фосфор и калий, к мезоэлементам – сера, кальций, магний, к микроэлементам – , медь, барий, хлор, натрий, титан, серебро, ванадий, никель, селен, литий, йод, алюминий.

Приведенная классификация, как и любая другая, достаточно условна, и те или иные элементы в работах разных авторов порой попадают в разные группы. Кроме того, в тканях некоторых видов растений отдельные микроэлементы содержатся в количествах, характерных для макроэлементов. Тем не менее, для практических целей, т.е. организации минерального питания растений в хозяйственных условиях, эта классификация достаточно удобна и позволяет адекватно оценить роль тех или других элементов в получении урожая, правильно подобрать методы восполнения их недостатка в почве.

Макроэлементы и мезоэлементы необходимы растению в достаточно больших количествах, потому что являются «строительным материалом», в первую очередь, для белков. Микроэлементы входят в состав ферментов, витаминов и т.п. Нормальное развитие и функционирование как отдельных клеток, так и всего растительного организма невозможно без оптимального обеспечения элементами всех этих групп.

Отсутствие или недостаток любого из элементов, необходимых для роста и размножения, вызывает вполне определенные симптомы голодания. Однако, поступая в повышенных дозах, как макро, так и микроэлементы становятся токсичными для растений и употребляющих их людей и животных.

Питательные вещества при корневом питании растения получают из почвы. Основным источником поступления микроэлементов в почву являются материнские почвообразующие породы. При этом почвы очень различаются по содержанию микроэлементов. Так, в моренных лессовидных суглинках содержание кобальта, хрома, стронция в 2 – 2,5 раза больше, а никеля, ванадия, титана, бария, бора, марганца – в 3 – 4 раза больше, чем в песках. Торфяно-болотные почвы бедны микроэлементами. При этом, содержание микроэлементов в почве увеличивается по мере накопления в ней органических веществ. То есть, при внесении навоза, компоста и других органических удобрений, почва обогащается не только макро-, но и микроэлементами.

Растворимость микроэлементов в почвах имеет большое значение для их биологической доступности и способности к перемещению. Тяжелые почвы (как щелочные, так и нейтральные) хорошо удерживают микроэлементы и поэтому медленно поставляют их растениям, что может приводить к нехватке некоторых элементов. Легкие почвы, наоборот, могут быть источником легкодоступных микроэлементов, но при этом их запас быстрее истощается. Поэтому при оценке обеспеченности почв микроэлементами важно учитывать не только их валовое содержание, но и наличие подвижных форм. Причем, разница между этими двумя значениями может быть весьма существенной. Например, бор в подвижной форме составляет лишь 2 – 4% от валового содержания этого микроэлемента, медь, молибден, кобальт, цинк – 10 – 15%.

Обеспеченность почвы микроэлементами меняется в течение вегетационного периода, а также зависит от интенсивности осадков, испарения влаги из почвы и т.д. В зависимости от этих факторов, концентрации микроэлементов в почвенных растворах могут изменяться более чем в 10 раз. Это необходимо учитывать при проведении анализов почвы. При этом концентрации макроэлементов, хотя также зависят от упомянутых факторов, изменяются в меньшей степени.

Перенос растворенных элементов в почве может происходить двумя путями: через почвенный раствор (диффузия) и вместе с движущимся почвенным раствором (вымывание). В зависимости от климата, этот процесс имеет свои особенности. Так, в прохладном влажном климате вымывание микроэлементов вниз по профилю почвы проявляется сильнее, чем их накопление. А в теплом сухом климате более характерно восходящее движение микроэлементов.

Состояние и доступность микроэлементов в почве зависит от ее кислотности. Так, цинк, марганец, медь, железо, кобальт, бор легко выщелачиваются в кислых почвах. Но если pH почвы поднимается выше 7, эти элементы образуют довольно устойчивые соединения. Молибден и селен, наоборот, мобилизуются в щелочных почвах, а в кислых становятся практически нерастворимыми.



Уровень содержания элементов также связан с биологической активностью почв. Низкая концентрация микроэлементов стимулирует увеличение бактерий в почве, а повышенное их содержание оказывает негативное влияние на почвенную микробиоту. Причем, наиболее токсичны микроэлементы для бактерий, фиксирующих свободный азот. В биомассе микроорганизмов микроэлементы могут накапливаться в таких больших концентрациях, что это влияет на уровень их содержания в почве в целом. При этом, связанные микроорганизмами микроэлементы становятся менее доступными для растений. Также менее доступны для растений элементы, фиксированные на оксидах, тогда как адсорбированные на глинистых минералах – наиболее доступные.

В целом, в почвах более половины общего содержания микроэлементов удерживается органическим веществом. Например, на торфяниках у растений нередко проявляются симптомы дефицита цинка, меди, молибдена, марганца. Причина этого – сильное удержание этих элементов нерастворимыми гуминовыми кислотами.

Степень поглощения растениями микроэлементов и интенсивность их роста в значительной степени зависит от наличия в почве макроэлементов – азота, фосфора и калия. Так, повышение уровня азотного питания увеличивает поступление в растения фосфора, калия, кальция, магния, меди, марганца и цинка. Но при избытке азота наблюдается обратная закономерность. Избыточные дозы фосфора снижают поступление в растение меди, железа и марганца. В присутствии фосфатов уменьшается поглощение растениями цинка. Калий может снижать поступление кальция и магния.

Микроэлементы, в свою очередь, влияют на поступление в растения макроэлементов. Так, поступление азота в растения снижается при дефиците железа, марганца и цинка. Положительно влияют на поглощение азота молибден и кобальт. Поглощение растениями фосфора увеличивается при наличии меди, цинка, кальция и молибдена, но уменьшается под влиянием магния и железа. Поступление в растения калия снижается под влиянием меди, марганца, никеля, цинка, молибдена, железа и бора, а возрастает при наличии хлора.

Описанные явления антагонизма и синергизма ионов очень сильно зависят от других факторов – температуры, вида растений, реакции среды, концентрации питательных веществ.

Интенсивность поглощения питательных веществ растениями также сильно зависит от температуры окружающей среды. Оптимальной для этого является температура + 25 - + 30 °С. Если температура поднимается выше + 35 °С либо падает ниже + 10 - + 12 °С, поглощение питательных веществ растениями замедляется, а потом и вовсе приостанавливается до наступления благоприятных условий.

Общеизвестный факт – на одной и той же почве, при одинаковом содержании в ней макро- и микроэлементов растения разных видов чувствуют себя по-разному. Связано это с их неодинаковыми потребностями в элементах питания. Причем, эти потребности различаются даже в те или иные периоды развития одного и того же растения. Например, для питания проростка гораздо важнее резерв микроэлементов в семени, чем их содержание в почве. Но для всех растений и периодов их развития является справедливым правило незаменимости элементов, согласно которому ни один из питательных элементов не может быть заменен другим. Поэтому при недостатке любого макро- или микроэлемента нет смысла пытаться увеличить урожай за счет внесения других элементов. Отсюда же следует, что для успешного восполнения нехватки питательных веществ нужно точно знать, каких именно элементов недостаточно.



Особенно чувствительны к недостатку или избытку питательных элементов молодые растения. В то же время, есть элементы, которые более необходимы растениям именно на первых этапах развития. Например, это относится к фосфору. В фазе активного роста сначала растения больше нуждаются в азоте, но со временем происходит увеличение потребности в калии. В период образования бутонов и цветения особенно важны фосфор и азот, а также бор.

Разные виды сельскохозяйственных культур довольно сильно различаются по чувствительности к дефициту микроэлементов (см. таблицу).







Для практических целей также важным является показатель выноса питательных веществ с урожаем. Относительное содержание элементов минерального питания в основной и побочной продукции разных сельскохозяйственных культур определяется, прежде всего, их видовыми особенностями, а также от сорта и условий выращивания. В частности, капуста, картофель, сахарная свекла, подсолнечник, кормовые корнеплоды для создания более высокого урожая потребляют гораздо больше питательных веществ, чем зерновые. Вынос питательных веществ из почвы возрастает с увеличением урожая. Тем не менее, затраты питательных веществ на единицу продукции при этом уменьшаются.


Все перечисленные особенности следует учитывать, разрабатывая стратегию и текущие планы обеспечения растений в определенном хозяйстве питательными элементами. В то же время, необходимо помнить и о том, что урожай предназначен потребителям. А конечные потребители сельскохозяйственной продукции – люди. И, например, недостаток микроэлементов в плодах растений может отрицательно влиять на здоровье потребителей, как и избыток тех или иных веществ.