Парусный ветрогенератор своими руками. Ветрогенераторы с жёсткими и парусными лопастями Самодельные парусные ветрогенераторы

Парусные ветряки конструкции Gravio, могут быть реализованы как с горизонтальной, так и вертикальной осью вращения ветроколеса. И главной особенностью ветряков (ВЭУ) Gravio является то, что эти ветряки парусные.

То ли дело, что парусники «визуально» тянут нас в прошлое и не так эстетичны, как красивые современные лопастники! Но НАМ ТО ЧТО НУЖНО? Красота и эстетика? Или РАБОТА агрегата(электричество) при слабом ветре??? А тем более, что парусники для того и собираются, чтобы там, где лопастники будут просто стоять и глаз радовать своею эстетикой(при 3х-4х м/с), они (парусники), несмотря на свою громоздкость и НЕэстетику, уже ПАХАЛИ и ВЫРАБАТЫВАЛИ мощность!

Несмотря на то, что к самому Gravio можно относиться подозрительно, так как он ведет на своем сайте и форуме не совсем «прозрачно», тем не менее вопрос не в самой личности Gravio, а в тех идеях, которые он излагает в своих кратких статьях, ответах и комментариях на форумах.

Основная часть сухопутных парусников Gravio является наследниками древнего критского ветроколеса, различные варианты которого продолжают использовать в ветряных мельницах Испании, Греции и в других странах Средиземноморья. Учитывая, что цивилизация Крита — это одно из направлений прарусской цивилизации, можно считать, что парусное ветроколесо - это одно из великих изобретений русского народа. когда-то проживающего на Крите.

По сравнению с лопастями классических мельниц, например, голландских или российских, парусные лопасти проще в изготовлении, эксплуатации или ремонте. У паруса есть одна важная особенность, которой нет у классической лопасти. Парус практически мгновенно подстраивается под силу и направление ветра, что обеспечивает возможность работы парусного ветряка в широком диапазоне скоростей ветра, от самых малых до буревых (50-60 м/с). Так как паруса располагаются по периферии ветроколеса, то даже при слабом ветре такое ветроколесо передает на ось электрогенератора заметную мощность, тогда как сечение лопасти у классического лопастного ветряка уменьшается от центра к периферии, поэтому лопастные ветряки, не способны утилизировать слабый ветер.

Данные парусные ветрогенераторы являются изобретениями Gravio, такой ник взял себе, наверное, Каплий Владимир Иванович, часть изобретений которого лежат на Луне и Венере.

В конструкции парусных ветряков Gravio есть много положительных качеств. Они отличаются от традиционных лопастных ветроустановок дешевизной, абсолютной экологичностью, способностью использовать энергию слабых ветров (2...5м/сек) и все это на фоне полного отсутствия больших вращающихся разнесенных масс, которые обеспечивают довольно высокую степень безопасности для окружающих. К примеру, классическую лопастную вертушку- маломерку нельзя поставить на пасеке из-за вероятности смертоубийства пчел и другой живности. Отсутствуют звуковые возмущения, вибрации и другие отрицательные стороны традиционных ветряных систем.

Предлагаемые Gravio парусные ветрогенераторы лучше всего подходят для сельской местности. Сельскому жителю, имеющему подворье, постоянно приходиться запаривать корм животным или обогревать теплицы. Кроме того, для нужд хозяйства нужна и механическая энергия, к примеру, для водоподъема или прессования самана. В зависимости от комплектации парусные ВЭУ поставляются в однофазном исполнении и трехфазном. Типовые модели: 1кВт, 4кВт, 10кВт. Максимальная мощность - до 100кВт. Комплект: поворотная опора (механизм крепления на штангу), мотор-редуктор, ветро-колесо, две запасных лопасти (паруса). Напряжение на выходе: 380В. Дополнительная комплектация: аккумуляторные батареи, зарядное устройство, инвертор, электроника, мачта, крепеж.

Эта информация дает достаточно полное представление, что парусные ветроустановки Gravio могли бы при массовом применении в сельской местности и в небольших городах решить многие проблемы, которые из-за плохого управления энергосетями России возникают всё чаще и чаще. Возможно, стоимость кватт*часа на таких установках будет выше, чем получаемого из общей сети, но кто будет возмещать убытки в случае отключения населенного пункта от общей сети? Почему при расчете стоимости кватт*часа никогда не учитывается упущенная выгода, а иногда и прямые убытки тех, у кого отключается электроэнергия? Что-то не было слышно, чтобы Чубайс покрыл убытки Москвы и москвичей при известной энергетической катастрофе в Москве. Люди немного помучились, и на этом всё завершилось. Добрый у нас народ при безжалостном государстве с безсовестными чиновниками и бизнесменами.

О достоинстве ВЭУ с горизонтальной осью вращения прекрасно высказался сам Gravio. Но у Gravio есть варианты ВЭУ c вертикальной осью вращения. И опять вместо жесткой лопасти в ветроколесе используется «гибкий» парус. В качестве устройства, передающее вращение от оси ветроколеса к оси электрогенератора, используется задний мост автомобиля: от УАЗа до КАМАЗа. Соответственно и мощность таких ВЭУ достигает 100 кватт и более.

Естественно, варианты парусных ВЭУ, предложенные Gravio, не единственные. Многие авторы, как в Европе, так и в США, работают над различными вариантами парусных ветроколес.

Основными достоинствами его конструкций является то, что они доступны для самостоятельного изготовления сельскими жителями из широко распространенных комплектующих. Электрогенератор - асинхронный мотор подходящей мощности, который подключается по схемам, хорошо известным любому грамотному электрику. Паруса имеют простое крепление и противобуревую защиту, в качестве которой выступает стальной трос заранее рассчитанного диаметра, который при достижении критической силы ветра просто рвется, предоставляя парусам полоскаться по ветру. Для приведения колеса в «боевую» готовность достаточно заменить порванный трос на новый.

Колеса парусников вращаются медленно, но обладают большой мощностью и моментом. Удалённое относительно оси вращения расположение парусов позволяет утилизировать струйки слабого ветра. В принудительной раскрутке парусник не нуждается. Ткань паруса очень гибко «подстраивается» под любой ветер, что позволяет извлекать из ветра мощность (энергию) с максимально возможным КПД без применения специальной системы управления. Ориентируется ветроколесо по ветру самостоятельно, а благодаря малой инерции и высокой «флюгерности» ветроколесо осуществляет это быстро и без потери мощности. При большом радиусе парусного колеса ему не страшны неравномерности в скорости ветра по высоте, так как каждый парус, работая на общую ось, гибко сам подстраивается под силу и направление локального воздушного потока. Кроме того, паруса в «рабочем» состоянии, создают между собой систему воздушных каналов, воздух в которых перенаправляется в таком направлении, что обеспечивается увеличение мощности ветроколеса, в том числе за счет эффекта присоединенных масс, так как увеличение скорости воздуха между парусами приводит к падению давления между ними, а значит, в эти зоны будет устремляться воздушные потоки, «пролетающие» рядом с ветроколесом. Т.е. эффективная площадь сечения воздушного потока, которая будет формировать итоговую мощность ВЭУ больше ометаемого парусником сечения, если брать в расчет диаметр колеса. И весь этот воздушный поток «перехватывается» парусами с высокой эффективностью.

Известно, что мощность ветряка прямопропорциональна ометаемой площади и кубу скорости ветра. Максимальная мощность ветряка с ометаемой площадью в 1 кв.м. при скорости ветра в 10 м/с примерно составляет 600 ватт. Так как парусный ветряк быстрее поворачивается по ветру, чем классический лопастник, самостоятельно вращается при ветрах слабее 1 м/с, то за одинаковое время эксплуатации «парусник» при той же ометаемой площади снимет с ветра больше энергии, чем классический лопастник. Парусник при изменении направления ветра на 180 градусов этот факт просто не заметит, так как его колесо будет вращаться и в том и другом случае в одну сторону. Классический лопастник половину порывов ветра просто пропускает из-за своей высокой инерционности, а на слабые порывы ветра, даже дующие вдоль оси ветроколеса, не в состоянии реагировать. При изменении направления сильного ветра на 180 градусов лопастник изменит свое вращение на обратное. А это уже совсем плохо. Тут никакой флюгер не поможет.

Выбирая источник энергии, т.е., сеть или парусник, необходимо учитывать не только параметры ВЭУ, но самое главное, надо заранее выяснить, а есть ли, вообще, смысл устанавливать ветряк. Мощность ветряка должна соответствовать мощности ветров на выбираемом участке земли и заданной высоте. При наличии большого количества солнечный дней остановить свой выбор на солнечных батареях и солнечных коллекторах. Но в любом случае иметь собственный безтопливный источник энергии в наше бурное и сложное время всегда полезно. Важно, чтобы государство этому процессу хотя бы не мешало. И тогда сухопутная парусная флотилия будет способна решить проблемы энергетической безопасности многих граждан России, особенно в сельской местности. Лишняя энергия в наше время - то же самое, что лошадь и меч в Средние Века.

Таким образом, Парусный Ветрогенератор:
* Позволяет эффективно использовать энергию ветра с высоким КПД за счет использования большой площади ветрового потока;

* За счет сравнительно медленного движения парусных элементов (по сравнению с ветротурбинами), безопасна для человека и животных, не создает шумовых инфразвуков и радиопомех;

* Работает в приземных воздушных потоках. Турбулентность приземного воздушного потока мало влияет на эффективность работы;

Цель использования технологии «Парусных Ветрогенераторов» заключается:
1. В максимальном использовании мощности ветрового потока, то есть входит в установку ветер 10 м/сек, а после отбора энергии выходит ветер 2-3 м/сек.

2. В компактности, безопасности, и в упрощении монтажа и обслуживания.

3. В снижении шума, отсутствии вредных инфразвуков, безопасности для птиц и человека.

4. В снижении стоимости вырабатываемой электроэнергии

5. В исключении необходимости в сверхвысоких технологиях уровня самолётостроения, как это имеет место при создании лопастных ВЭУ.

6. В доступности Парусной ВЭУ для широкого потребления.

7. В наземном базировании установок, что также влияет на удобство обслуживания и в итоге на цену киловатта.

Экология потребления.Наука и техника: Можно сказать, что парусный ветряк один из самых простых, но в тоже время один из самых неэффективных существующих ветряков. КИЭВ парусного ветряка не может быть выше 20% даже теоретически.

Человечество использует паруса с незапамятных времен, уже много тысяч лет. Вобщем, сколько себя помнит. Когда о аэродинамике еще и понятия не имели. Но ветряные мельницы уже крутились и лодки под парусами уже плавали. Правда в те времена пользовались обычно плоскими парусами. В средние века были изобретены паруса более совершенные, что тут же повлекло резкий скачок в развитии мореплавания, и как следствие - наиболее громкие географические открытия. Но до сих пор парус продолжает служить и будет служить людям до тех пор, пока дует ветер.

Как выглядит парусный ветряк вам должно быть понятно из фотографий. Не вдаваясь в дебри аэродинамики, можно сказать, что парусный ветряк один из самых простых, но в тоже время один из самых неэффективных существующих ветряков. КИЭВ парусного ветряка не может быть выше 20% даже теоретически. Это означает, что вы будете получать только 1/5 часть мощности ветрового потока, попадающего на лопасти парусного ветряка. Например, если ветер дует со скоростью 5 м/с, а ветряк у вас 5 метров в диаметре, то мощность ветрового потока будет ок. 1500 Ватт. Вы же реально можете снять с ветряка только 300 Ватт (в лучшем случае). И это с пятиметровой конструкции!

К счастью только низким КИЭВ (коэффициент использования энергии ветра) недостатки парусного ветряка и ограничиваются. Дальше идут только достоинства.

Парусный ветряк - самый тихоходный ветряк. Его быстроходность редко приближается к 2, а обычно находится в диапазоне от 1 до 1,5. И все из за его чудовищной аэродинамики.

С другой стороны, парусный ветряк - один из самых чувствительных ветряков. Он работает с самого низа диапазона скоростей ветра, начиная буквально от штиля, с 1-2 метров в секунду. А это намаловажный фактор в условиях центральной России, где ветер редко бывает больше 3-5 метров в секунду. Тут, где более быстроходные ветряки по большей части бьют баклуши, парусный ветряк будет хоть что то выдавать. Хотя, как вам наверное известно, Россия не славится ветряными мельницами, тут не приморская Голландия и ветра нас не балуют. Зато было много водяных мельниц.

Еще одним достоинством парусного ветряка является удивительная простота его конструкции. Вал ветряка, на подшипниках, естественно, на валу - ступица. К ступице прикреплены «мачты», обычно из от 8 до 24-х. А от мачт отходят косые паруса из прочной тонкой материи, как правило, синтетической. Другая часть паруса крепится шкотами, которые выполняют и роль регуляторов угла поворота парусов и роль противоштормовой защиты. Т.е. самое примитивное парусное вооружение, проще, чем на самой простой яхте.

Именно эта простота конструкции и не позволяет отправлять парусный ветряк в архив технических достижений человечества. Для переносного, перевозного, походного, аварийного варианта парусный ветряк - достаточно достойная конструкция. В собранном варианте он представляет собой упаковку не больше, чем палатка. Паруса свернуты, мачты сложены. Даже 2-х метровый парусный ветряк на ветре в 5 метров/сек даст верных 25-40 Ватт энергии, чего с лихвой хватит для зарядка аккумуляторов и связной и навигационной аппаратуры, да и для незамысловатой системы освещения на мощных светодиодах хватит.

Невысокая по определению мощность парусного ветряка наводит на мысль о применении в качестве генератора шагового двигателя аналогичной мощности (30-40 Ватт). Ему тоже не требуются высокие обороты, 200-300 в минуту вполне хватит. Что идеально согласуется с частотой оборотов ветряка. Ведь он при быстроходности 1,5, будет выдавать эти 200 оборотов уже при ветре 4-5 метров в секунду. Используя готовый шаговый двигатель вы тем самым избавите себя от достаточно серьезной мороки по изготовлению электрогенератора. Поскольку изначально подразумевается наличие редуктора или мультипликатора, то легко можно согласовать обороты парусного ветряка и генератора.

Если сделать вариант с жесткими (пластиковыми парусами), то можно будет несколько увеличить быстроходность, правда за счет некоторого снижения мобильности. В разобранном виде ветряк будет занимать больше места.

Поэтому если ваши амбиции по запряганию ветра в свою телегу ограничиваются мощностью в пару-тройку десятков Ватт для зарядки небольших и средних аккумуляторов, (до 100 А.ч), организацией простого освещения с помощью инвертора до 220 вольт и энергосберегающих ламп, то парусный ветряк - весьма и весьма достойный вариант. Это будет пусть и не самый эффективный в плане использования энергии ветра, но очень бюджетный и быстро окупаемый вариант. 2-3 метровый ветряк будет выдавать вам до 1 КВт энергии в сутки.

В качестве походного, парусный ветряк будет дешевле самого дешевого бензинового электрогенератора и окупит себя изначально.

Стационарные парусные ветряки строят изначально большие именно из-за их невысокого КИЭВ. Не менее 5-6 метров диаметром, иначе нет смысла. Такой ветряк уже стабильно будет выдавать до 2-3 Квт энергии в сутки. И при рачительном ее использовании, их можно превратить в 3-5 Квт осветительной энергии (например для освещения теплицы или парника). А при использовании теплового насоса - в 5-6 Квт тепловой энергии, что позволит отапливать небольшой садовый домик в 20-30 кв. метров и серьезно экономить топливо.

Поэтому парусный ветряк, несмотря на свою архаичность конструкции остается способом использования ветра все еще заслуживающим внимания. Особенно в зоне слабых ветров.

Верхний предел рабочей скорости ветра у парусного ветряка не более 10-12 метров в секунду. И то у самых надежных ветряков. Поэтому при конструировании парусного ветряка следует серьезно озаботиться штормовой защитой. Например сделать «ломающиеся» мачты, на основе конструкции антенны Куликова, или придумать устройство расслабляющие шкоты, что бы превратить паруса во флаги, или складывать мачты при помощи тросов –растяжек, и т.д. опубликовано


Довольно интересную конструкцию выбрал автор этого ветрогенератора. Это парусный ветрогенератор с мачтой фермного типа и мощностью до 4 кВт в час.

Материалы и детали использованные при строительстве этого ветрогенератора:
1) детали от моста и колесных дисков
2) профильная труба
3) лебедка
4) двигатель постоянного тока на щетках и магнитах 1971 года выпуска

Рассмотрим более подробно конструкцию этого ветрогенератора.


Под основание мачты автор выкопал яму и залил ее бетоном. В бетоне сделаны закладные для прикручивания мачты на болты.Благодаря такому основательному подходу в креплении будет уверенность в надежности мачты к любым ветрам.


Затем автор приступил к изготовлению поворотной оси ветрогенератора. Ось была выполнена из деталей от моста и колесных дисков. Общий вес конструкции получился порядка 150 килограмм.

Для поднятия и установки деталей на уже поставленную мачту ветрогенератора автор использовал простую лебедку.
Таким образом сначала была поднята поворотная конструкция, а затем и сам генератор.


В то же время он занимался над конструкцией ветроколеса.


Затем на каркас ветроколеса были одеты паруса.


После чего начался монтаж ветроколеса на мачту генератора. Подъем осуществлялся с помощью той же лебедки. После чего ветроколесо было установлено на свое место и закреплено болтами.

В таком виде ветрогенератор уже приступил к работе и выдавал необходимую энергию для зарядки аккумуляторов.

На этой картинке вы можете видеть электрическую схему балластного регулятора.

Так же был сделан контроллер зарядки и отбора мощности.


А на само ветроколесо были одеты более прочные паруса.

Автор строил данный ветрогенератор как эксперимент. В итоге данный экспериментальный образец проявил себя превосходно. На момент окончания данных модернизаций ветрогенератор использовался в комплекте с аккумулятором 12 вольт 155А. Конструкция была дополнена стандартным инвертором 12\220 вольт, благодаря чему автор мог использовать телевизор, ноутбук и прочие бытовые электроприборы от энергии ветрогенератора. В дальнейшем автор планирует сделать преобразователь, катушку Тесла для передачи энергии без проводов, то есть продолжить экспериментировать.

Различают два вида лопастей ветрогенераторов по жесткости: жесткие и парусные.

Жёсткие лопасти для ветрогенератора

Роторы могут изготавливаться с лопастями из различных материалов и разной степени жесткости. Классические установки промышленного образца используют жесткие материалы. Это дает возможность стабилизировать эксплуатационные параметры изделий во времени, обеспечить повторяемость характеристик ветрогенераторов и увеличить ресурс лопастей ротора, так как жесткая поверхность лучше противостоит воздействию внешней среды.

Ветер несет частицы пыли, сверху льется дождь и сыпется град. Поверхность крыльев, изготовляемых серийно различными предприятиями из соответствующих жестких материалов, сохраняет форму и качество поверхности в течение всего срока эксплуатации изделия.

Не стоит забывать, что от того, насколько гладка поверхность крыла зависит сопротивление крыла в потоке воздуха, особенно на высоких скоростях вращения ротора. Профиль крыла рассчитывается таким образом, чтобы добиться максимальной эффективности использования ветра, и внешнее воздействие снижает эту эффективность.

Поэтому, для производства жестких лопастей для ветрогенератора предприятия используют различные пластмассы, металл и наборное дерево, обработанное особым образом.

Парусный ветрогенератор

Главным отличием лопастей парусного вида является намного меньшая стоимость материала, простота изготовления и ремонта. Эти преимущества привлекают многих, кто делает ветрогенератор своими руками.

В качестве материала может использоваться ткань, фанера, тонкие металлические листы и другие, доступные в быту и легкие в обработке подходящие товары из хозяйственного магазина. Какие же еще положительные особенности привлекают строителей ветроустановок?

Самая важная особенность – большая суммарная рабочая поверхность парусных лопастей. Дело в том, что парусный ветрогенератор может стартовать и давать энергию при мизерных значениях скорости ветра – меньше полуметра в секунду. Конечно, парусная лопасть за счет своей неаэродинамической формы снизит эффективность работы по мере увеличения скорости вращения, но задача в данном случае состоит в отборе энергии именно слабого ветра, преобладающего в средних широтах. И с этой задачей ротор данного вида справляется лучше остальных, так как принцип его действия отличается от принципа ротора с жестким крылом.

Выше по тексту было написано “профиль крыла рассчитывается таким образом, чтобы добиться максимальной эффективности”. Но проблема состоит в том, что нет просто максимальной эффективности, а есть максимальная эффективность при определенных условиях, таких как скорость движения в воздушном потоке и угол атаки. Поэтому, для того, чтобы получить нужную величину эффективности необходимо, чтобы жесткая лопасть достигла той суммарной векторной скорости движения относительно потока воздуха, которая была заложена при расчете профиля крыла. А до того момента лопасть работает крайне неэффективно. И именно этого недостатка лишен парусный ротор.

Затраты на изготовление лопастей для ветрогенератора

Рассмотрим, что включают затраты на изготовление жесткого и парусного роторов.

Поскольку штатный режим работы жесткого ротора предполагает высокую скорость вращения, то понятно, что к профилю лопасти предъявляются повышенные требования. Это приводит к увеличению затрат на высококачественные материалы и дорогостоящее оборудование.

Парусные роторы вращаются с невысокой скоростью, поэтому на форме и чистоте обработки поверхностей можно сэкономить. Но низкая скорость приводит к появлению другой проблемы. Мощность электрического тока, вырабатываемого генератором, напрямую зависит от скорости вращения ротора. Чем быстрее вращается ротор – тем больше энергии вырабатывается.

Эту проблему можно решить двумя способами – подключив генератор через редуктор-мультипликатор с высоким КПД, или применив специальный низкооборотный генератор.

Оба варианта достаточно дороги, но второй предпочтительнее, потому что, каким бы ни был высоким КПД редуктора, он не может достичь 100%, и часть энергии будет теряться.

Таким образом, на вопрос о том, какой ветрогенератор обойдется дороже в изготовлении можно ответить так.

Если вы собираетесь ставить его в средних широтах, где среднегодовая скорость ветра не превышает 4 м/с, то дороже обойдется жесткое крыло, поскольку в среднем ротор будет находиться не в штатном режиме работы. А фактически, он большее время будет просто стоять, так как не сможет стартовать.

Парусная ветроустановка, в самом худшем случае будет практически постоянно давать энергию, т.к. 4 м/с для нее хоть и невысокая, но вполне подходящая скорость.

Материалы лопастей ветровых установок

Для изготовления жестких роторов в настоящее время активно используют металл, стекло- и углепластик. Иногда лопасти печатают на широко распространенных в последнее время 3-D принтерах.

При создании парусного ротора применяются всевозможные современные ткани -, NewSkytex, Toray ,Cuben, Gelvenor, Sofly и другие.

В случае применения низкооборотного генератора высокая скорость вращения не понадобиться. В таком случае необходимо предусмотреть устройства регулирования шага винта.

Любителям пообсуждатьо КИЭВ посвящается!!!

В отечественной аэродинамике рассматривающих(иногда) вопросы утилизации энергии ветровых потоков, абсолютно необоснованно введено ушлыми (именно так) предпринимателями определение - КИЭВ коэффициент использования энергии ветра...

Эта условная единица(для модели плоских ветров), призвана заменить обычный КПД.Данный "показатель"притянут в теорию слабых потоков за уши (по аналогии и методе - цикла Карно)

Математически верная логика термодинамических процессов призвана описывать циклы имеющие конечный (базовый) потенциал располагаемой энергии и позволяет определить следующее: если Вы имеете тепловую машину мощностью 100 л.с. (при КПД 30%), то реально на полезную работу приходится всего - 30 л.с.Иначе: эти 30% и являются полной (100%) - располагаемой (реально имеющейся в наличии) мощности для данной конструкции.

Для тепловых машин - лучшего инструментария пока нет.

Иначе все в практической аэродинамике. Для определения разности давлений (над крылом и под крылом) используется количество движения которое определяется как скорость объекта при движении в воздухе, или (движение воздуха в котором находится объект). Следовательно, давно постулированное г.Бернулли утверждение, о зависимости давления от скорости здесь уместно, а это значит, что в конечном счете аэродинамический К - зависит от разности давлений, - именно поэтому объект перемещается из области повышенного давления - в область пониженного давления.Заглянем в атлас (любой) авиационных профилей, и обратим внимание на скорость потоков обтекания профиля при которых перепад давлений максимальный. Они(скорости) все без исключения лежат в области расположенной гораздо ВЫШЕ чем скорость имеющегося в наличии повседневного ветра(3м/сек).

Можно ли в здравом уме применять в малом диапазоне ветров(скоростей обтекания) данную методу, не имея результатов реальной продувки? Оказывается "можно"- имея на вооружении модель плоского ветра,"теоретики"разных рангов доказывают что лопастные ветроколеса - более полно утилизируют энергию малых ветров.А будет ли вообще вращаться "лопастник" на слабых ветрах?Разумеется нет,как нет и повода даже думать о применении лопастников на территории СНГ в качестве альтернативных источников энергии утилизирующих слабые потоки, - из практики известно что на повседневных ветрах СНГ лопастники не работают,никогда не работали и работать не будут.Для этого надо принудительно вращать лопастное ветроколесо, или... ждать когда Всевышний ниспошлет сильный ветер.

Парусники работают - во всем диапазоне ветров.

Проектировщики (мощных) лопастных быстроходных ветроколес довольно грамотно используют ветра. Начиная со скорости 10м/сек. - комлевая (широкая) часть лопасти - движет лопасть (как парус) а при наличии сильного ветра концевые профили (достигая больших скоростей) используют уже появившиеся высокие скорости потоков обтекания. Вполне разумно. Достаточно практично. Именно на больших скоростях обтекания и необходимо профилировать,и "закручивать" (по размаху) лопасть. Вот только располагаемая мощность - (энергия воздушного потока) приходящая на ВСЮ ометаемую площадь распределяется так: центральная часть лопастного колеса - двигатель, а периферийная часть - преобразователь энергии (уже высоких) скоростей ветра в крутящий момент на валу генератора.

Двойное преобразование располагаемой энергии - позволяет превосходно использовать энергию ветра от 10-12 метров в секунду,(решая заодно проблему быстроходности генераторов).Задача парусного ветроколеса, - использовать всю располагаемую мощность приходящую на ометаемую площадь. Поскольку, полезную работу могут произвести только реальные силы (рождающиеся при срабатывании ПЕРЕПАДА давлений,то «разбор полетов», необходимо производить инструментами привычными (???) для аэростатики, чем для аэродинамики.

Согласитесь, стоящий под напором ветра телеграфный столб - совершает работу. Работу - по ОТКЛОНЕНИЮ приходящего на него потока. Энергию для этой работы поставляет - тот же ветер. Если этот столб подпилить, работа совершится в ЯВНОМ виде столб просто - упадет. Если на двух столбах натянуть парус (и подпилить), ЯВНОЙ работы совершится БОЛЬШЕ. Если эти столбы закрепить на ВАЛУ редуктора, работа уже будет производится как по отклонению воздушного потока, так и по вращению вала. А если еще и оптимизировать конструкцию приблизительно так как выполнено парусное ветроколесо (вверху слева) - Вы будете иметь ветродвигатель для малых ветров.

Но вернемся к «анализам»парусных ветроколес (блуждающим в Интернете) . Математический аппарат заслуживает внимания, но общая беда кабинетных теоретиков - извращение физической картины процесса. Действительно, применяя к своим рассуждениям вполне корректное (2.1.1)- для неподвижной пластины, и совершая вместе с автором небольшой экскурс в анналы общей аэродинамики, уже в (2.1.4) мы с Вами получаем точную цену - на... дрова.

Дело в том, что пластина(парус) не "как бы убегает" т.е.- движется (с потоком)по потоку - а вполне реально находится в потоке и более того - отклоняет поток за пределы ветроколеса, смещаясь в плоскости перпендикулярной к оси вращения ветроколеса.

Иначе,- незадачливые оппоненты, не ленятся рассматривать ПРОСТО парус поднятый на лодке которая плывет под воздействием ветра в ту сторону куда он дует.
Налицо явно выражена любовь к Н.Е Жуковскому, с его так и не принятой в практической аэродинамике статьёй
«Ветряные мельницы типа НЕЖ. Статья 3».

Ветроколесу парусного типа вообще-то присуща иная картина обтекания. Называется она КОНИЧЕСКАЯ. А ветроколесо в целом представляет собой кольцевое бесконечное щелевое крыло которого 95 лет назад (время написания статьи) - не существовало даже в больном воображении. Это сейчас совместная работа предкрылка с крылом - хорошо описана для больших скоростей обтекания и понятна. Но серьёзных работ по сверхмалым воздушным потокам обтекания нет. И быть не может потому что физические величины такие как ДАВЛЕНИЕ (перед парусом скорость ветра упала-давление возросло) - рассматриваются также и в АЭРОСТАТИКЕ. Поэтому мне более подходит морская терминология, говоря о - тандеме СТАКСЕЛЬ и ГРОТ.

Именно яхтсмены первыми оценили практически то, что зашифровали кабинетчики - КИЭВ(я ничего не имею против "лопастников"- на сильных ветрах эти машины работали и будут работать (не взирая на киэвы) - на благо человека.

На рисунках выше представлены парусное ветроколесо и, -"пропеллер". Как видим, диаметры ометаемых площадей равны. А вот рабочие органы - различаются не только конструкцией. Они отличаются прежде всего - размерами, а значит и рабочей ПЛОЩАДЬЮ. В теории винтов так и озвучивается - площадь рабочих органов. А соотношение ометаемой площади к суммарной площади рабочих органов носит название - коэффициент заполнения винта. Если уж пояснять совсем проще, то "пропеллер" наложенный на ометаемую площадь(мысленно)укроет приблизительно только 10 процентов всей ометаемой площади. Парусное ветроколесо в аналогичных условиях закроет почти ВСЮ ометаемую площадь. Комментарии нужны?

Если рассмотрим картину обтекания лопастного ветроколеса в конкретном(любом) АЗИМУТАЛЬНОМ положении, то легко догадаемся что элементарная струйка воздуха проходящая МЕЖДУ лопастями - НЕ СОВЕРШАЕТ работы даже бесполезной. Струйка проходит сквозь сито… С парусным ветроколесом такой номер (извините), не прокатит - приходя на ометаемую площадь, элементарная струйка воздуха натыкается (да простят меня специалисты)на ПАРУС. Далее все просто - она отклоняется на 90градусов (если удерживать колесо) и выходит (на периферию),- ЗА ПРЕДЕЛЫ ометаемой площади(ускоряясь).Или, (если колесо не удерживать) она отклонится на МЕНЬШИЙ угол, отдав энергию парусу, который в свою очередь передаст ПОЛЕЗНУЮ энергию на вал генератора. А уж если вообще отказаться от псевдоученого анализа, и повернуться лицом к практике, то - на полигоне часто приходится видеть такую картину, парусное ветроколесо ВЭУ 10.380(сх) при ветре 5м/сек. не могут удержать от вращения целая группа студентов.

Лопастной ветряк при таком ветре не стоит удерживать. Потому как вообще не раскручивается. Но вернемся к нашим оппонентам. Во всевозможных опусах обнаруживаем, что »...если пластина неподвижна, то полезная мощность равна нулю. Если пластина движется со скоростью ветра, то она не испытывает давления и мощность тоже равна нулю...» - Это конечно - от большого ума.По мнению авторов, движущаяся по ветру лодка с поднятым парусом - картина нереальная в силу своей бесполезности. Стоящая же на якоре, но с поднятым парусом, вроде как бы и реальная картина, но полезная мощность опять - равна нулю.

Наивная ошибочность заключается в полном непонимании работы паруса. Дело в том, что парус совершает работу и когда движется и когда стоит, сопротивляясь ветру. В последнем случае, ВСЯ мощность приходящего потока превращается в работа паруса по отклонению воздушного потока приходящего на ометаемую площадь. Требуется немного - эту работу направить в полезное русло (сняться с якоря,- или снять с тормоза ветряк).Лопасть же, установленная на лодке вместо паруса, потребует для этих целей очень сильного ветра. То же самое - и для лопастного ветряка. А вот парус движет лодку (крутит генератор) и на малых ветрах. На больших ветрах он просто производит БОЛЬШЕ полезной работы. Чтобы убедиться в этом достаточно укрепить на лодке ЛОПАСТНОЕ ветроколесо и на другой лодке парусное ветроколесо,результаты "эксперимента" понятны...В"научных работах" оппонентов нередко звучит "... Т.е. для достижения максимального КИЭВ скорость пластины должна быть в три раза меньше скорости ветра."- оставляю без комментариев, так как понятно - парус реагирует на ЛЮБОЙ ветер и создает необходимый ПЕРЕПАД давлений. Остальное все от лукавого.

Рассмотрим небольшое (крайний справа верху) «кино»: здесь представлен рабочий образец парусного ветрячка из Прибалтики, созданный специально для проверки возможностей парусного ветряка. Чертежи конструктор, не приобретал, пользовался методом ППП (пол, палец, потолок) и интуицией, но говорить о КПД данного ветроколеса все равно стоит. Он выше чем у лопастника (того же диаметра), во всем ДИАПАЗОНЕ ветров, начиная от 0,5 м.сек.Это выводы сравнительного анализа произведенным самим умельцем. Но нас интересуют все прелести парусного ветроколеса, которую и можно отследить на этом экземплярчике.

Понятно что, подход ветра (к ометаемой площади) осуществляется с тыльной стороны. Паруса наполнены ветром в нашу сторону, и чуть под углом. Для специалиста ясно, что ветер притормаживаясь перед колесом и совершив работу выпускается через щель (задняя неподкрепленная кромка паруса).Через эти щели согласитесь, уходит уже отработанный воздух(подпираемый вновь прибывающими порциями воздуха).Более научно это описал г. Бернулли постулируя следующее: при снижении скорости потока растет давление. В результате мы имеем повышенное давление с НАВЕТРЕННОЙ стороны ветроколеса и РАЗРЯЖЕНИЕ с подветренной стороны. Именно срабатывание энергии этого перепада давлений и определяет количественно работу ветряка. Лопастному ветроколесу, такое и не снилось… Вспомните, - между лопастями ветер беспрепятственно проникает на противоположную сторону ветроколеса - ВЫРАВНИВАЯ давления. А это-плохо.

Если нет разности (перепада) давлений, то о какой РАБОТЕ может идти речь вообще? Следовательно - основной недостаток лопастного ветроколеса (для малых ветров): очерченная концами лопастей площадь(ометаемая) используется до нельзя СКВЕРНО. Данное утверждение может опровергать только - глупец.Аргумент: если оппонирующего субъекта принудительно заставить выпрыгнуть из летящего самолета предложив на выбор (вместо парашюта) лопастное и парусное ветроколесо держу пари - несчастный ИНТУИТИВНО выберет парусное спасательное средство.

Кстати, серийный мотодельтаплан МД-20 c «вертушкой» (вместо штатного крыла) успешно отработал сезон на авиахимработах показав превосходные результаты - при ветре 5 м.сек, длина разбега со штатным 100 литровым хим.баком составила 20(!)метров, скороподъёмность - 4м. Вернемся к нашему кино. Поскольку ветрячок был поднят над землей всего на 1.5 м. Турбулизированый приземный слой воздуха (смотрите в каком квадранте ометаемой площади «флатерит»задняя кромка) - неважно наполняет парус. Но поднятое над землей (проверено!) на высоту ОДНОГО диаметра - парусное ветроколесо включается в работу полностью. А далее - еще интереснее: уходящий из рабочей зоны отработанный воздух (подпираемый сзади)попадая в конический раструб - вновь ускоряется (вспомним о давлении с наветренной стороны).Отметим немаловажное - вектор ускорения направлен ТАНГЕНЦИАЛЬНО к ветроколесу. Если вспомнить закон сохранения количества движения,то половина энергии кинетического движения воздуха (речь о втором, дополнительном ускорении) достается - опять тому же парусному колесу. Ибо щель является ни чем иным как -обычным реактивным соплом, создающим пропульсивную силу.

Прирост реактивной составляющей, при 10м.сек. равен 40 процентов от всей приходящей на ометаемую площадь энергии ветра. О том что пусковой момент, больше рабочего момента (лопастники отдыхают) и говорить теперь уже не надо. Для особо воинствующих оппонентов, попробую объяснить суть разницы между парусом и лопастью на основе молекулярно - кинетической теории, не прибегая к мат.аппарату.Часто пишут специалисты,(обидно что именно - специалисты) приводя следующий аргумент: в воздушном потоке (конкретного)сечения заключена (конкретная) энергия.

Природа происхождения «аргумента»- проста. В известную формулу кинетической энергии подставляется плотность и скорость (относительно чего?) в квадрате. Затем всё это удовольствие разделено на 2.Но пилить дрова все же лучше пилой, чем рубанком… Рекомендую обратиться к процессу ВЫВОДА этой формулы. Для того чтобы тело куда двигалось (летело, бежало…) необходимо столько же энергии отдать и 2 телу с которым, то что движется (летит и прыгает) ВЗАИМОДЕЙСТВОВАЛО для получения необходимого количества движения. Именно поэтому в формуле потенциальной энергии ОТСУТСТВУЕТ дробная черта. А в кинетической - имеется.

В случае с ветроколесом (любого типа) мы работаем с полной энергией потока так, как не МЫ с Вами запускали в движение поток воздуха (ветер). И обратно. Рассматривая крыло самолета (винт вертолета) мы обязаны руководствоваться только КИНЕТИЧЕСКОЙ энергией(делить на 2) поскольку МЫ сами заставляем тело (самолет) - двигаться в воздухе и никак не наоборот. И весь запас энергии надо возить с собой в виде топлива. Иначе он просто не полетит.

Дело в том, что энергия ветра, образовавшаяся в результате гравитационных взаимодействий - является для обычных граждан 100 процентной (полной энергией) которую лопасть обязана снять с заданной (конкретной) площади. Обязана. Но, - не может физически - размеры лопасти несопоставимы с площадью сечения струи. Рассматривая воздушный поток (в свете МКТ) - обнаружим что ветер это - направленный (упорядоченный)поток молекул воздуха. Каждая молекула несет энергию(неважно кто ей придал энергию - важно как ее грамотно снять) - а мы вдруг на ее пути поставили лопасть.

Отрикошетив, молекула отдала часть энергии и обогнув препятствие кратковременно изменила направление собственного движения (турбулизировала поток) и подхваченная соседками унеслась дальше унося и свой импульс - а значит и энергию. Справка: любое изменение направление движения материальной точки ДРУГИМ субъектом физического мира - является ЭНЕРГООБМЕННЫМ процессом. Угол изменения направления движения молекулы,- определяет КОЛИЧЕСТВО энергии переданной второму телу. Остановка молекулы препятствием полностью - означает 100 процентную передачи энергии препятствию.

Затормозив, а точнее отклонив большее количество молекул, мы получаем и больше энергии. Догадайтесь какое из двух рассматриваемых ветроколес тормознет больше молекул? Правильно. Но и "лопастники"(если их принудительно) вращать-соберут (отклонят)эти самые молекулы. И чем больше угловая скорость вращения лопасти тем с большим количеством молекул они столкнутся(снимут энергию),а на больших скоростях подключится еще и аэродинамика...

Парусное колесо вообще не нужно вращать для этих целей. Оно сразу контактирует со всеми молекулами приходящими на ометаемую им площадь. А получая энергию от множества молекул одновременно - просто крутится вместе с валом редуктора.

Все ли преимущества парусного колеса представлены здесь? Нет конечно. Открою еще одну «тайну». Парусное ветроколесо не разбрасывает элементарные струйки воздуха в разные стороны, а бережно собирает их в свои гибкие конуса(рабочие органы), и выпускает через реактивные щели за пределы ометаемой площади. И куда бы не попала струйка воздуха - на край паруса или в центр, она будет остановлена, перенаправлена, вновь ускорена (подходящими струями - давлением)и выпущена через реактивную щель, отдав всю первоначальную энергию и половину (теперь уже точно кинетической) энергии полученной во время ускорения в «желобе»конуса.

Это уже теория построена на ОБЪЕМНОЙ модели воздуха.Откуда взялась эта вторая кинетическая энергия на ускорение? Ну, если ветер не отменили - из давления созданного прибывающими на ометаемую площадь элементарными струйками воздуха.

Ну такие они,- струйки.

Владимир из Таганрога